-
-
Notifications
You must be signed in to change notification settings - Fork 11k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
323 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
import { ModelProviderCard } from '@/types/llm'; | ||
|
||
// ref: https://ollama.com/library | ||
const LMStudio: ModelProviderCard = { | ||
chatModels: [ | ||
{ | ||
description: | ||
'Llama 3.1 是 Meta 推出的领先模型,支持高达 405B 参数,可应用于复杂对话、多语言翻译和数据分析领域。', | ||
displayName: 'Llama 3.1 8B', | ||
enabled: true, | ||
id: 'llama3.1', | ||
tokens: 128_000, | ||
}, | ||
{ | ||
description: 'Qwen2.5 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。', | ||
displayName: 'Qwen2.5 14B', | ||
enabled: true, | ||
id: 'qwen2.5-14b-instruct', | ||
tokens: 128_000, | ||
}, | ||
], | ||
defaultShowBrowserRequest: true, | ||
id: 'lmstudio', | ||
modelList: { showModelFetcher: true }, | ||
modelsUrl: 'https://lmstudio.ai/models', | ||
name: 'LM Studio', | ||
showApiKey: false, | ||
smoothing: { | ||
speed: 2, | ||
text: true, | ||
}, | ||
url: 'https://lmstudio.ai', | ||
}; | ||
|
||
export default LMStudio; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,255 @@ | ||
// @vitest-environment node | ||
import OpenAI from 'openai'; | ||
import { Mock, afterEach, beforeEach, describe, expect, it, vi } from 'vitest'; | ||
|
||
import { | ||
ChatStreamCallbacks, | ||
LobeOpenAICompatibleRuntime, | ||
ModelProvider, | ||
} from '@/libs/agent-runtime'; | ||
|
||
import * as debugStreamModule from '../utils/debugStream'; | ||
import { LobeLMStudioAI } from './index'; | ||
|
||
const provider = ModelProvider.LMStudio; | ||
const defaultBaseURL = 'http://localhost:1234/v1'; | ||
|
||
const bizErrorType = 'ProviderBizError'; | ||
const invalidErrorType = 'InvalidProviderAPIKey'; | ||
|
||
// Mock the console.error to avoid polluting test output | ||
vi.spyOn(console, 'error').mockImplementation(() => {}); | ||
|
||
let instance: LobeOpenAICompatibleRuntime; | ||
|
||
beforeEach(() => { | ||
instance = new LobeLMStudioAI({ apiKey: 'test' }); | ||
|
||
// 使用 vi.spyOn 来模拟 chat.completions.create 方法 | ||
vi.spyOn(instance['client'].chat.completions, 'create').mockResolvedValue( | ||
new ReadableStream() as any, | ||
); | ||
}); | ||
|
||
afterEach(() => { | ||
vi.clearAllMocks(); | ||
}); | ||
|
||
describe('LobeLMStudioAI', () => { | ||
describe('init', () => { | ||
it('should correctly initialize with an API key', async () => { | ||
const instance = new LobeLMStudioAI({ apiKey: 'test_api_key' }); | ||
expect(instance).toBeInstanceOf(LobeLMStudioAI); | ||
expect(instance.baseURL).toEqual(defaultBaseURL); | ||
}); | ||
}); | ||
|
||
describe('chat', () => { | ||
describe('Error', () => { | ||
it('should return OpenAIBizError with an openai error response when OpenAI.APIError is thrown', async () => { | ||
// Arrange | ||
const apiError = new OpenAI.APIError( | ||
400, | ||
{ | ||
status: 400, | ||
error: { | ||
message: 'Bad Request', | ||
}, | ||
}, | ||
'Error message', | ||
{}, | ||
); | ||
|
||
vi.spyOn(instance['client'].chat.completions, 'create').mockRejectedValue(apiError); | ||
|
||
// Act | ||
try { | ||
await instance.chat({ | ||
messages: [{ content: 'Hello', role: 'user' }], | ||
model: 'deepseek-chat', | ||
temperature: 0, | ||
}); | ||
} catch (e) { | ||
expect(e).toEqual({ | ||
endpoint: defaultBaseURL, | ||
error: { | ||
error: { message: 'Bad Request' }, | ||
status: 400, | ||
}, | ||
errorType: bizErrorType, | ||
provider, | ||
}); | ||
} | ||
}); | ||
|
||
it('should throw AgentRuntimeError with NoOpenAIAPIKey if no apiKey is provided', async () => { | ||
try { | ||
new LobeLMStudioAI({}); | ||
} catch (e) { | ||
expect(e).toEqual({ errorType: invalidErrorType }); | ||
} | ||
}); | ||
|
||
it('should return OpenAIBizError with the cause when OpenAI.APIError is thrown with cause', async () => { | ||
// Arrange | ||
const errorInfo = { | ||
stack: 'abc', | ||
cause: { | ||
message: 'api is undefined', | ||
}, | ||
}; | ||
const apiError = new OpenAI.APIError(400, errorInfo, 'module error', {}); | ||
|
||
vi.spyOn(instance['client'].chat.completions, 'create').mockRejectedValue(apiError); | ||
|
||
// Act | ||
try { | ||
await instance.chat({ | ||
messages: [{ content: 'Hello', role: 'user' }], | ||
model: 'deepseek-chat', | ||
temperature: 0, | ||
}); | ||
} catch (e) { | ||
expect(e).toEqual({ | ||
endpoint: defaultBaseURL, | ||
error: { | ||
cause: { message: 'api is undefined' }, | ||
stack: 'abc', | ||
}, | ||
errorType: bizErrorType, | ||
provider, | ||
}); | ||
} | ||
}); | ||
|
||
it('should return OpenAIBizError with an cause response with desensitize Url', async () => { | ||
// Arrange | ||
const errorInfo = { | ||
stack: 'abc', | ||
cause: { message: 'api is undefined' }, | ||
}; | ||
const apiError = new OpenAI.APIError(400, errorInfo, 'module error', {}); | ||
|
||
instance = new LobeLMStudioAI({ | ||
apiKey: 'test', | ||
|
||
baseURL: 'https://api.abc.com/v1', | ||
}); | ||
|
||
vi.spyOn(instance['client'].chat.completions, 'create').mockRejectedValue(apiError); | ||
|
||
// Act | ||
try { | ||
await instance.chat({ | ||
messages: [{ content: 'Hello', role: 'user' }], | ||
model: 'deepseek-chat', | ||
temperature: 0, | ||
}); | ||
} catch (e) { | ||
expect(e).toEqual({ | ||
endpoint: 'https://api.***.com/v1', | ||
error: { | ||
cause: { message: 'api is undefined' }, | ||
stack: 'abc', | ||
}, | ||
errorType: bizErrorType, | ||
provider, | ||
}); | ||
} | ||
}); | ||
|
||
it('should throw an InvalidDeepSeekAPIKey error type on 401 status code', async () => { | ||
// Mock the API call to simulate a 401 error | ||
const error = new Error('Unauthorized') as any; | ||
error.status = 401; | ||
vi.mocked(instance['client'].chat.completions.create).mockRejectedValue(error); | ||
|
||
try { | ||
await instance.chat({ | ||
messages: [{ content: 'Hello', role: 'user' }], | ||
model: 'deepseek-chat', | ||
temperature: 0, | ||
}); | ||
} catch (e) { | ||
// Expect the chat method to throw an error with InvalidDeepSeekAPIKey | ||
expect(e).toEqual({ | ||
endpoint: defaultBaseURL, | ||
error: new Error('Unauthorized'), | ||
errorType: invalidErrorType, | ||
provider, | ||
}); | ||
} | ||
}); | ||
|
||
it('should return AgentRuntimeError for non-OpenAI errors', async () => { | ||
// Arrange | ||
const genericError = new Error('Generic Error'); | ||
|
||
vi.spyOn(instance['client'].chat.completions, 'create').mockRejectedValue(genericError); | ||
|
||
// Act | ||
try { | ||
await instance.chat({ | ||
messages: [{ content: 'Hello', role: 'user' }], | ||
model: 'deepseek-chat', | ||
temperature: 0, | ||
}); | ||
} catch (e) { | ||
expect(e).toEqual({ | ||
endpoint: defaultBaseURL, | ||
errorType: 'AgentRuntimeError', | ||
provider, | ||
error: { | ||
name: genericError.name, | ||
cause: genericError.cause, | ||
message: genericError.message, | ||
stack: genericError.stack, | ||
}, | ||
}); | ||
} | ||
}); | ||
}); | ||
|
||
describe('DEBUG', () => { | ||
it('should call debugStream and return StreamingTextResponse when DEBUG_DEEPSEEK_CHAT_COMPLETION is 1', async () => { | ||
// Arrange | ||
const mockProdStream = new ReadableStream() as any; // 模拟的 prod 流 | ||
const mockDebugStream = new ReadableStream({ | ||
start(controller) { | ||
controller.enqueue('Debug stream content'); | ||
controller.close(); | ||
}, | ||
}) as any; | ||
mockDebugStream.toReadableStream = () => mockDebugStream; // 添加 toReadableStream 方法 | ||
|
||
// 模拟 chat.completions.create 返回值,包括模拟的 tee 方法 | ||
(instance['client'].chat.completions.create as Mock).mockResolvedValue({ | ||
tee: () => [mockProdStream, { toReadableStream: () => mockDebugStream }], | ||
}); | ||
|
||
// 保存原始环境变量值 | ||
const originalDebugValue = process.env.DEBUG_DEEPSEEK_CHAT_COMPLETION; | ||
|
||
// 模拟环境变量 | ||
process.env.DEBUG_DEEPSEEK_CHAT_COMPLETION = '1'; | ||
vi.spyOn(debugStreamModule, 'debugStream').mockImplementation(() => Promise.resolve()); | ||
|
||
// 执行测试 | ||
// 运行你的测试函数,确保它会在条件满足时调用 debugStream | ||
// 假设的测试函数调用,你可能需要根据实际情况调整 | ||
await instance.chat({ | ||
messages: [{ content: 'Hello', role: 'user' }], | ||
model: 'deepseek-chat', | ||
stream: true, | ||
temperature: 0, | ||
}); | ||
|
||
// 验证 debugStream 被调用 | ||
expect(debugStreamModule.debugStream).toHaveBeenCalled(); | ||
|
||
// 恢复原始环境变量值 | ||
process.env.DEBUG_DEEPSEEK_CHAT_COMPLETION = originalDebugValue; | ||
}); | ||
}); | ||
}); | ||
}); |
Oops, something went wrong.