Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[HLSL] Vector Usual Arithmetic Conversions #110195

Merged
merged 3 commits into from
Sep 27, 2024

Conversation

llvm-beanz
Copy link
Collaborator

HLSL has a different set of usual arithmetic conversions for vector types to resolve a common type for binary operator expressions.

This PR implements the current spec proposal from: microsoft/hlsl-specs#311

There is one case that may need additional handling for implicitly truncating vector<T,1> to T early to allow other transformations.

Fixes #106253

Re-lands #108659

types to resolve a common type for binary operator expressions.

This PR implements the current spec proposal from:
microsoft/hlsl-specs#311

There is one case that may need additional handling for implicitly
truncating vector<T,1> to T early to allow other transformations.

Fixes llvm#106253

../clang/test/SemaHLSL/Language/UsualArithmeticConversions.hlsl
@llvmbot llvmbot added clang Clang issues not falling into any other category clang:frontend Language frontend issues, e.g. anything involving "Sema" HLSL HLSL Language Support labels Sep 27, 2024
@llvmbot
Copy link
Collaborator

llvmbot commented Sep 27, 2024

@llvm/pr-subscribers-hlsl

@llvm/pr-subscribers-clang

Author: Chris B (llvm-beanz)

Changes

HLSL has a different set of usual arithmetic conversions for vector types to resolve a common type for binary operator expressions.

This PR implements the current spec proposal from: microsoft/hlsl-specs#311

There is one case that may need additional handling for implicitly truncating vector<T,1> to T early to allow other transformations.

Fixes #106253

Re-lands #108659


Patch is 38.20 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/110195.diff

7 Files Affected:

  • (modified) clang/include/clang/Basic/DiagnosticSemaKinds.td (+3)
  • (modified) clang/include/clang/Driver/Options.td (+1-1)
  • (modified) clang/include/clang/Sema/Sema.h (+2-1)
  • (modified) clang/include/clang/Sema/SemaHLSL.h (+5)
  • (modified) clang/lib/Sema/SemaExpr.cpp (+16-2)
  • (modified) clang/lib/Sema/SemaHLSL.cpp (+188)
  • (added) clang/test/SemaHLSL/Language/UsualArithmeticConversions.hlsl (+383)
diff --git a/clang/include/clang/Basic/DiagnosticSemaKinds.td b/clang/include/clang/Basic/DiagnosticSemaKinds.td
index f3d5d4c56606cc..9e8f152852fd1e 100644
--- a/clang/include/clang/Basic/DiagnosticSemaKinds.td
+++ b/clang/include/clang/Basic/DiagnosticSemaKinds.td
@@ -12395,6 +12395,9 @@ def err_hlsl_operator_unsupported : Error<
 
 def err_hlsl_param_qualifier_mismatch :
   Error<"conflicting parameter qualifier %0 on parameter %1">;
+def err_hlsl_vector_compound_assignment_truncation : Error<
+  "left hand operand of type %0 to compound assignment cannot be truncated "
+  "when used with right hand operand of type %1">;
 
 def warn_hlsl_impcast_vector_truncation : Warning<
   "implicit conversion truncates vector: %0 to %1">, InGroup<Conversion>;
diff --git a/clang/include/clang/Driver/Options.td b/clang/include/clang/Driver/Options.td
index 932cf13edab53d..1dc2ff18170abf 100644
--- a/clang/include/clang/Driver/Options.td
+++ b/clang/include/clang/Driver/Options.td
@@ -2978,7 +2978,7 @@ def flax_vector_conversions_EQ : Joined<["-"], "flax-vector-conversions=">, Grou
                     "LangOptions::LaxVectorConversionKind::Integer",
                     "LangOptions::LaxVectorConversionKind::All"]>,
   MarshallingInfoEnum<LangOpts<"LaxVectorConversions">,
-                      open_cl.KeyPath #
+                      !strconcat("(", open_cl.KeyPath, " || ", hlsl.KeyPath, ")") #
                           " ? LangOptions::LaxVectorConversionKind::None" #
                           " : LangOptions::LaxVectorConversionKind::All">;
 def flax_vector_conversions : Flag<["-"], "flax-vector-conversions">, Group<f_Group>,
diff --git a/clang/include/clang/Sema/Sema.h b/clang/include/clang/Sema/Sema.h
index e1c3a99cfa167e..a9ce3681338d46 100644
--- a/clang/include/clang/Sema/Sema.h
+++ b/clang/include/clang/Sema/Sema.h
@@ -7423,7 +7423,8 @@ class Sema final : public SemaBase {
                                               SourceLocation Loc,
                                               BinaryOperatorKind Opc);
   QualType CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
-                                      SourceLocation Loc);
+                                      SourceLocation Loc,
+                                      BinaryOperatorKind Opc);
 
   /// Context in which we're performing a usual arithmetic conversion.
   enum ArithConvKind {
diff --git a/clang/include/clang/Sema/SemaHLSL.h b/clang/include/clang/Sema/SemaHLSL.h
index 311cd58bbcac2c..fa957abc9791af 100644
--- a/clang/include/clang/Sema/SemaHLSL.h
+++ b/clang/include/clang/Sema/SemaHLSL.h
@@ -63,6 +63,11 @@ class SemaHLSL : public SemaBase {
       std::initializer_list<llvm::Triple::EnvironmentType> AllowedStages);
   void DiagnoseAvailabilityViolations(TranslationUnitDecl *TU);
 
+  QualType handleVectorBinOpConversion(ExprResult &LHS, ExprResult &RHS,
+                                       QualType LHSType, QualType RHSType,
+                                       bool IsCompAssign);
+  void emitLogicalOperatorFixIt(Expr *LHS, Expr *RHS, BinaryOperatorKind Opc);
+
   void handleNumThreadsAttr(Decl *D, const ParsedAttr &AL);
   void handleWaveSizeAttr(Decl *D, const ParsedAttr &AL);
   void handleSV_DispatchThreadIDAttr(Decl *D, const ParsedAttr &AL);
diff --git a/clang/lib/Sema/SemaExpr.cpp b/clang/lib/Sema/SemaExpr.cpp
index 66df9c969256a2..e072fb65b81328 100644
--- a/clang/lib/Sema/SemaExpr.cpp
+++ b/clang/lib/Sema/SemaExpr.cpp
@@ -10133,6 +10133,10 @@ QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
   assert(LHSVecType || RHSVecType);
 
+  if (getLangOpts().HLSL)
+    return HLSL().handleVectorBinOpConversion(LHS, RHS, LHSType, RHSType,
+                                              IsCompAssign);
+
   // AltiVec-style "vector bool op vector bool" combinations are allowed
   // for some operators but not others.
   if (!AllowBothBool && LHSVecType &&
@@ -12863,7 +12867,8 @@ static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
 }
 
 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
-                                          SourceLocation Loc) {
+                                          SourceLocation Loc,
+                                          BinaryOperatorKind Opc) {
   // Ensure that either both operands are of the same vector type, or
   // one operand is of a vector type and the other is of its element type.
   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
@@ -12883,6 +12888,15 @@ QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
   if (!getLangOpts().CPlusPlus &&
       !(isa<ExtVectorType>(vType->getAs<VectorType>())))
     return InvalidLogicalVectorOperands(Loc, LHS, RHS);
+  // Beginning with HLSL 2021, HLSL disallows logical operators on vector
+  // operands and instead requires the use of the `and`, `or`, `any`, `all`, and
+  // `select` functions.
+  if (getLangOpts().HLSL &&
+      getLangOpts().getHLSLVersion() >= LangOptionsBase::HLSL_2021) {
+    (void)InvalidOperands(Loc, LHS, RHS);
+    HLSL().emitLogicalOperatorFixIt(LHS.get(), RHS.get(), Opc);
+    return QualType();
+  }
 
   return GetSignedVectorType(LHS.get()->getType());
 }
@@ -13054,7 +13068,7 @@ inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
   // Check vector operands differently.
   if (LHS.get()->getType()->isVectorType() ||
       RHS.get()->getType()->isVectorType())
-    return CheckVectorLogicalOperands(LHS, RHS, Loc);
+    return CheckVectorLogicalOperands(LHS, RHS, Loc, Opc);
 
   bool EnumConstantInBoolContext = false;
   for (const ExprResult &HS : {LHS, RHS}) {
diff --git a/clang/lib/Sema/SemaHLSL.cpp b/clang/lib/Sema/SemaHLSL.cpp
index 1d8ccdda45573f..f17b606a8f262a 100644
--- a/clang/lib/Sema/SemaHLSL.cpp
+++ b/clang/lib/Sema/SemaHLSL.cpp
@@ -401,6 +401,194 @@ void SemaHLSL::DiagnoseAttrStageMismatch(
       << (AllowedStages.size() != 1) << join(StageStrings, ", ");
 }
 
+template <CastKind Kind>
+static void castVector(Sema &S, ExprResult &E, QualType &Ty, unsigned Sz) {
+  if (const auto *VTy = Ty->getAs<VectorType>())
+    Ty = VTy->getElementType();
+  Ty = S.getASTContext().getExtVectorType(Ty, Sz);
+  E = S.ImpCastExprToType(E.get(), Ty, Kind);
+}
+
+template <CastKind Kind>
+static QualType castElement(Sema &S, ExprResult &E, QualType Ty) {
+  E = S.ImpCastExprToType(E.get(), Ty, Kind);
+  return Ty;
+}
+
+static QualType handleFloatVectorBinOpConversion(
+    Sema &SemaRef, ExprResult &LHS, ExprResult &RHS, QualType LHSType,
+    QualType RHSType, QualType LElTy, QualType RElTy, bool IsCompAssign) {
+  bool LHSFloat = LElTy->isRealFloatingType();
+  bool RHSFloat = RElTy->isRealFloatingType();
+
+  if (LHSFloat && RHSFloat) {
+    if (IsCompAssign ||
+        SemaRef.getASTContext().getFloatingTypeOrder(LElTy, RElTy) > 0)
+      return castElement<CK_FloatingCast>(SemaRef, RHS, LHSType);
+
+    return castElement<CK_FloatingCast>(SemaRef, LHS, RHSType);
+  }
+
+  if (LHSFloat)
+    return castElement<CK_IntegralToFloating>(SemaRef, RHS, LHSType);
+
+  assert(RHSFloat);
+  if (IsCompAssign)
+    return castElement<clang::CK_FloatingToIntegral>(SemaRef, RHS, LHSType);
+
+  return castElement<CK_IntegralToFloating>(SemaRef, LHS, RHSType);
+}
+
+static QualType handleIntegerVectorBinOpConversion(
+    Sema &SemaRef, ExprResult &LHS, ExprResult &RHS, QualType LHSType,
+    QualType RHSType, QualType LElTy, QualType RElTy, bool IsCompAssign) {
+
+  int IntOrder = SemaRef.Context.getIntegerTypeOrder(LElTy, RElTy);
+  bool LHSSigned = LElTy->hasSignedIntegerRepresentation();
+  bool RHSSigned = RElTy->hasSignedIntegerRepresentation();
+  auto &Ctx = SemaRef.getASTContext();
+
+  // If both types have the same signedness, use the higher ranked type.
+  if (LHSSigned == RHSSigned) {
+    if (IsCompAssign || IntOrder >= 0)
+      return castElement<CK_IntegralCast>(SemaRef, RHS, LHSType);
+
+    return castElement<CK_IntegralCast>(SemaRef, LHS, RHSType);
+  }
+
+  // If the unsigned type has greater than or equal rank of the signed type, use
+  // the unsigned type.
+  if (IntOrder != (LHSSigned ? 1 : -1)) {
+    if (IsCompAssign || RHSSigned)
+      return castElement<CK_IntegralCast>(SemaRef, RHS, LHSType);
+    return castElement<CK_IntegralCast>(SemaRef, LHS, RHSType);
+  }
+
+  // At this point the signed type has higher rank than the unsigned type, which
+  // means it will be the same size or bigger. If the signed type is bigger, it
+  // can represent all the values of the unsigned type, so select it.
+  if (Ctx.getIntWidth(LElTy) != Ctx.getIntWidth(RElTy)) {
+    if (IsCompAssign || LHSSigned)
+      return castElement<CK_IntegralCast>(SemaRef, RHS, LHSType);
+    return castElement<CK_IntegralCast>(SemaRef, LHS, RHSType);
+  }
+
+  // This is a bit of an odd duck case in HLSL. It shouldn't happen, but can due
+  // to C/C++ leaking through. The place this happens today is long vs long
+  // long. When arguments are vector<unsigned long, N> and vector<long long, N>,
+  // the long long has higher rank than long even though they are the same size.
+
+  // If this is a compound assignment cast the right hand side to the left hand
+  // side's type.
+  if (IsCompAssign)
+    return castElement<CK_IntegralCast>(SemaRef, RHS, LHSType);
+
+  // If this isn't a compound assignment we convert to unsigned long long.
+  QualType ElTy = Ctx.getCorrespondingUnsignedType(LHSSigned ? LElTy : RElTy);
+  QualType NewTy = Ctx.getExtVectorType(
+      ElTy, RHSType->castAs<VectorType>()->getNumElements());
+  (void)castElement<CK_IntegralCast>(SemaRef, RHS, NewTy);
+
+  return castElement<CK_IntegralCast>(SemaRef, LHS, NewTy);
+}
+
+static CastKind getScalarCastKind(ASTContext &Ctx, QualType DestTy,
+                                  QualType SrcTy) {
+  if (DestTy->isRealFloatingType() && SrcTy->isRealFloatingType())
+    return CK_FloatingCast;
+  if (DestTy->isIntegralType(Ctx) && SrcTy->isIntegralType(Ctx))
+    return CK_IntegralCast;
+  if (DestTy->isRealFloatingType())
+    return CK_IntegralToFloating;
+  assert(SrcTy->isRealFloatingType() && DestTy->isIntegralType(Ctx));
+  return CK_FloatingToIntegral;
+}
+
+QualType SemaHLSL::handleVectorBinOpConversion(ExprResult &LHS, ExprResult &RHS,
+                                               QualType LHSType,
+                                               QualType RHSType,
+                                               bool IsCompAssign) {
+  const auto *LVecTy = LHSType->getAs<VectorType>();
+  const auto *RVecTy = RHSType->getAs<VectorType>();
+  auto &Ctx = getASTContext();
+
+  // If the LHS is not a vector and this is a compound assignment, we truncate
+  // the argument to a scalar then convert it to the LHS's type.
+  if (!LVecTy && IsCompAssign) {
+    QualType RElTy = RHSType->castAs<VectorType>()->getElementType();
+    RHS = SemaRef.ImpCastExprToType(RHS.get(), RElTy, CK_HLSLVectorTruncation);
+    RHSType = RHS.get()->getType();
+    if (Ctx.hasSameUnqualifiedType(LHSType, RHSType))
+      return LHSType;
+    RHS = SemaRef.ImpCastExprToType(RHS.get(), LHSType,
+                                    getScalarCastKind(Ctx, LHSType, RHSType));
+    return LHSType;
+  }
+
+  unsigned EndSz = std::numeric_limits<unsigned>::max();
+  unsigned LSz = 0;
+  if (LVecTy)
+    LSz = EndSz = LVecTy->getNumElements();
+  if (RVecTy)
+    EndSz = std::min(RVecTy->getNumElements(), EndSz);
+  assert(EndSz != std::numeric_limits<unsigned>::max() &&
+         "one of the above should have had a value");
+
+  // In a compound assignment, the left operand does not change type, the right
+  // operand is converted to the type of the left operand.
+  if (IsCompAssign && LSz != EndSz) {
+    Diag(LHS.get()->getBeginLoc(),
+         diag::err_hlsl_vector_compound_assignment_truncation)
+        << LHSType << RHSType;
+    return QualType();
+  }
+
+  if (RVecTy && RVecTy->getNumElements() > EndSz)
+    castVector<CK_HLSLVectorTruncation>(SemaRef, RHS, RHSType, EndSz);
+  if (!IsCompAssign && LVecTy && LVecTy->getNumElements() > EndSz)
+    castVector<CK_HLSLVectorTruncation>(SemaRef, LHS, LHSType, EndSz);
+
+  if (!RVecTy)
+    castVector<CK_VectorSplat>(SemaRef, RHS, RHSType, EndSz);
+  if (!IsCompAssign && !LVecTy)
+    castVector<CK_VectorSplat>(SemaRef, LHS, LHSType, EndSz);
+
+  // If we're at the same type after resizing we can stop here.
+  if (Ctx.hasSameUnqualifiedType(LHSType, RHSType))
+    return Ctx.getCommonSugaredType(LHSType, RHSType);
+
+  QualType LElTy = LHSType->castAs<VectorType>()->getElementType();
+  QualType RElTy = RHSType->castAs<VectorType>()->getElementType();
+
+  // Handle conversion for floating point vectors.
+  if (LElTy->isRealFloatingType() || RElTy->isRealFloatingType())
+    return handleFloatVectorBinOpConversion(SemaRef, LHS, RHS, LHSType, RHSType,
+                                            LElTy, RElTy, IsCompAssign);
+
+  assert(LElTy->isIntegralType(Ctx) && RElTy->isIntegralType(Ctx) &&
+         "HLSL Vectors can only contain integer or floating point types");
+  return handleIntegerVectorBinOpConversion(SemaRef, LHS, RHS, LHSType, RHSType,
+                                            LElTy, RElTy, IsCompAssign);
+}
+
+void SemaHLSL::emitLogicalOperatorFixIt(Expr *LHS, Expr *RHS,
+                                        BinaryOperatorKind Opc) {
+  assert((Opc == BO_LOr || Opc == BO_LAnd) &&
+         "Called with non-logical operator");
+  llvm::SmallVector<char, 256> Buff;
+  llvm::raw_svector_ostream OS(Buff);
+  PrintingPolicy PP(SemaRef.getLangOpts());
+  StringRef NewFnName = Opc == BO_LOr ? "or" : "and";
+  OS << NewFnName << "(";
+  LHS->printPretty(OS, nullptr, PP);
+  OS << ", ";
+  RHS->printPretty(OS, nullptr, PP);
+  OS << ")";
+  SourceRange FullRange = SourceRange(LHS->getBeginLoc(), RHS->getEndLoc());
+  SemaRef.Diag(LHS->getBeginLoc(), diag::note_function_suggestion)
+      << NewFnName << FixItHint::CreateReplacement(FullRange, OS.str());
+}
+
 void SemaHLSL::handleNumThreadsAttr(Decl *D, const ParsedAttr &AL) {
   llvm::VersionTuple SMVersion =
       getASTContext().getTargetInfo().getTriple().getOSVersion();
diff --git a/clang/test/SemaHLSL/Language/UsualArithmeticConversions.hlsl b/clang/test/SemaHLSL/Language/UsualArithmeticConversions.hlsl
new file mode 100644
index 00000000000000..d9f20a4cb79ecb
--- /dev/null
+++ b/clang/test/SemaHLSL/Language/UsualArithmeticConversions.hlsl
@@ -0,0 +1,383 @@
+// RUN: %clang_cc1 -triple dxil-pc-shadermodel6.3-library -finclude-default-header -fnative-half-type %s -DERRORS -Wconversion -Wdouble-promotion -verify
+// RUN: %clang_cc1 -triple dxil-pc-shadermodel6.3-library -std=hlsl2018 -finclude-default-header -fnative-half-type %s -DERRORS -Wconversion -Wdouble-promotion -verify
+// RUN: %clang_cc1 -triple dxil-pc-shadermodel6.3-library -finclude-default-header -fnative-half-type %s -ast-dump | FileCheck %s
+
+#if __HLSL_VERSION <= 2021
+// expected-warning@*{{support for HLSL language version hlsl2018 is incomplete, recommend using hlsl202x instead}}
+#endif
+
+//----------------------------------------------------------------------------//
+// Case 1: float4 * int4 and inverse.
+//
+// In both cases here the int is converted to a float and the computation
+// produces a float value.
+//----------------------------------------------------------------------------//
+
+// CHECK-LABEL: FunctionDecl {{.*}} used f4f4i4 'float4 (float4, int4)'
+// CHECK: BinaryOperator {{.*}} 'float4':'vector<float, 4>' '*'
+// CHECK-NEXT: ImplicitCastExpr {{.*}} 'float4':'vector<float, 4>' <LValueToRValue>
+// CHECK-NEXT: DeclRefExpr {{.*}} 'float4':'vector<float, 4>' lvalue ParmVar {{.*}} 'A' 'float4':'vector<float, 4>'
+// CHECK-NEXT: ImplicitCastExpr {{.*}} 'float4':'vector<float, 4>' <IntegralToFloating>
+// CHECK-NEXT: ImplicitCastExpr {{.*}} 'int4':'vector<int, 4>' <LValueToRValue>
+// CHECK-NEXT: DeclRefExpr {{.*}} 'int4':'vector<int, 4>' lvalue ParmVar {{.*}} 'B' 'int4':'vector<int, 4>'
+export float4 f4f4i4(float4 A, int4 B) {
+  return A * B; // expected-warning{{implicit conversion from 'int4' (aka 'vector<int, 4>') to 'float4' (aka 'vector<float, 4>') may lose precision}}
+}
+
+// CHECK-LABEL: FunctionDecl {{.*}} used f4i4f4 'float4 (float4, int4)'
+// CHECK: BinaryOperator {{.*}} 'float4':'vector<float, 4>' '*'
+// CHECK-NEXT: ImplicitCastExpr {{.*}} 'float4':'vector<float, 4>' <IntegralToFloating>
+// CHECK-NEXT: ImplicitCastExpr {{.*}} 'int4':'vector<int, 4>' <LValueToRValue>
+// CHECK-NEXT: DeclRefExpr {{.*}} 'int4':'vector<int, 4>' lvalue ParmVar {{.*}} 'B' 'int4':'vector<int, 4>'
+// CHECK-NEXT: ImplicitCastExpr {{.*}} 'float4':'vector<float, 4>' <LValueToRValue>
+// CHECK-NEXT: DeclRefExpr {{.*}} 'float4':'vector<float, 4>' lvalue ParmVar {{.*}} 'A' 'float4':'vector<float, 4>'
+export float4 f4i4f4(float4 A, int4 B) {
+  return B * A; // expected-warning{{implicit conversion from 'int4' (aka 'vector<int, 4>') to 'float4' (aka 'vector<float, 4>') may lose precision}}
+}
+
+//----------------------------------------------------------------------------//
+// Case 2: float4 * int2 and inverse.
+//
+// In both cases the float vector is trunctated to a float2 and the integer
+// vector is converted to a float2.
+//----------------------------------------------------------------------------//
+
+// CHECK-LABEL: FunctionDecl {{.*}} used f2f4i2 'float2 (float4, int2)'
+// CHECK: BinaryOperator {{.*}} 'vector<float, 2>' '*'
+// CHECK-NEXT: ImplicitCastExpr {{.*}} 'vector<float, 2>' <HLSLVectorTruncation>
+// CHECK-NEXT: ImplicitCastExpr {{.*}}'float4':'vector<float, 4>' <LValueToRValue>
+// CHECK-NEXT: DeclRefExpr {{.*}} 'float4':'vector<float, 4>' lvalue ParmVar {{.*}} 'A' 'float4':'vector<float, 4>'
+// CHECK-NEXT: ImplicitCastExpr {{.*}} 'vector<float, 2>' <IntegralToFloating>
+// CHECK-NEXT: ImplicitCastExpr {{.*}} 'int2':'vector<int, 2>' <LValueToRValue>
+// CHECK-NEXT: DeclRefExpr {{.*}} 'int2':'vector<int, 2>' lvalue ParmVar {{.*}} 'B' 'int2':'vector<int, 2>'
+export float2 f2f4i2(float4 A, int2 B) {
+  // expected-warning@#f2f4i2 {{implicit conversion from 'int2' (aka 'vector<int, 2>') to 'vector<float, 2>' (vector of 2 'float' values) may lose precision}}
+  // expected-warning@#f2f4i2 {{implicit conversion truncates vector: 'float4' (aka 'vector<float, 4>') to 'vector<float, 2>' (vector of 2 'float' values)}}
+  return A * B; // #f2f4i2
+}
+
+// CHECK-LABEL: FunctionDecl {{.*}} used f2i2f4 'float2 (float4, int2)'
+// CHECK: BinaryOperator {{.*}} 'vector<float, 2>' '*'
+// CHECK-NEXT: ImplicitCastExpr {{.*}} 'vector<float, 2>' <IntegralToFloating>
+// CHECK-NEXT: ImplicitCastExpr {{.*}} 'int2':'vector<int, 2>' <LValueToRValue>
+// CHECK-NEXT: DeclRefExpr {{.*}} 'int2':'vector<int, 2>' lvalue ParmVar {{.*}} 'B' 'int2':'vector<int, 2>'
+// CHECK-NEXT: ImplicitCastExpr {{.*}} 'vector<float, 2>' <HLSLVectorTruncation>
+// CHECK-NEXT: ImplicitCastExpr {{.*}}'float4':'vector<float, 4>' <LValueToRValue>
+// CHECK-NEXT: DeclRefExpr {{.*}} 'float4':'vector<float, 4>' lvalue ParmVar {{.*}} 'A' 'float4':'vector<float, 4>'
+export float2 f2i2f4(float4 A, int2 B) {
+  // expected-warning@#f2i2f4 {{implicit conversion from 'int2' (aka 'vector<int, 2>') to 'vector<float, 2>' (vector of 2 'float' values) may lose precision}}
+  // expected-warning@#f2i2f4 {{implicit conversion truncates vector: 'float4' (aka 'vector<float, 4>') to 'vector<float, 2>' (vector of 2 'float' values)}}
+  return B * A; // #f2i2f4
+}
+
+//----------------------------------------------------------------------------//
+// Case 3: Integers of mismatched sign, equivalent size, but the unsigned type
+// has lower conversion rank.
+//
+// This is the odd-ball case for HLSL that isn't really in spec, but we should
+// handle gracefully. The lower-ranked unsigned type is converted to the
+// equivalent unsigned type of higher rank, and the signed type is also
+// converted to that unsigned type (meaning `unsigned long` becomes `unsinged
+// long long`, and `long long` becomes `unsigned long long`).
+//----------------------------------------------------------------------------//
+
+// CHECK-LABEL: FunctionDecl {{.*}} used wierdo 'int4 (vector<unsigned long, 4>, vector<long long, 4>)'
+// CHECK: BinaryOperator {{.*}} 'vector<unsigned long long, 4>' '*'
+// CHECK-NEXT: ImplicitCastExpr {{.*}} 'vector<unsigned long long, 4>' <I...
[truncated]

@llvm-beanz llvm-beanz merged commit 4407cf9 into llvm:main Sep 27, 2024
6 of 8 checks passed
xgupta pushed a commit to xgupta/llvm-project that referenced this pull request Oct 4, 2024
HLSL has a different set of usual arithmetic conversions for vector
types to resolve a common type for binary operator expressions.

This PR implements the current spec proposal from:
microsoft/hlsl-specs#311

There is one case that may need additional handling for implicitly
truncating vector<T,1> to T early to allow other transformations.

Fixes llvm#106253

Re-lands llvm#108659
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
clang:frontend Language frontend issues, e.g. anything involving "Sema" clang Clang issues not falling into any other category HLSL HLSL Language Support
Projects
Status: No status
Development

Successfully merging this pull request may close these issues.

[HLSL] bitcasts emitted instead of vector conversions in binary operators
2 participants