https://rpubs.com/ljohnso14/polypuvr
Hanging under the ledge: Synergistic consequences of UVA and UVB radiation on scyphozoan polyp reproduction and health
Lauren E Johnson and Laura M Treible
Overexposure to ultraviolet radiation (UVR) emitted by the sun can damage and kill living cells in animals, plants, and microorganisms. In aquatic environments, UVR can penetrate nearly 47 m into the water column, severely impacting many marine organisms. Jellyfish are often considered resilient to environmental stressors, potentially explaining their success in environmentally disturbed areas, but the extent of their resilience to UVR is not well known. Here, we tested resiliency to UVR by exposing benthic polyps of the moon jellyfish, Aurelia sp., to UVA and UVB—the two types of UVR that reach Earth’s surface—both separately and in combination. We quantified asexual reproduction rates and polyp attachment to hard substrate, in addition to qualitative observations of polyp health. There were no differences in asexual reproduction rates between polyps exposed to isolated UVA and polyps that received no UVR. Polyps reproduced when exposed to short term (~7-9 days) isolated UVB, but long-term exposure limited reproduction and polyp attachment to the substrate. When exposed to both UVA and UVB, polyps were unable to feed and remained attached to the substrate, did not reproduce, and ultimately, experienced 100% mortality within 20 days. Although many studies only examine the effects of UVB, the combination of UVA and UVB here resulted in greater negative impacts than either form of UVR in isolation. Therefore, studies that only examine effects of UVB potentially underestimate environmentally relevant effects of UVR. These results suggest that polyps are unsuccessful under UVR stress, so the planula larval stage must settle in low-UVR environments to establish the success of the polyp stage.