CLIPer: Hierarchically Improving Spatial Representation of CLIP for Open-Vocabulary Semantic Segmentation
This repo is the official pytorch implementation of the CLIPer.
- We have released a gradio demo, and you can find it in huggingface with CPU
and ModelScape with GPU or in you device by running
app.py
. - We have released the sourse code of CLIPer (all the models needed will be downloaded automatically when running the code).
- We introduce the early-layer fusion, including patch embeddings and attention maps of early layer to the final layer of CLIP for improving spatial representation.
- We further introduce the fine-grained compensation, utilizing the detailed spacial information in the self-attention maps of Stable Diffusion to obtain the precise segmentation results.
- The proposed CLIPer achieve the state-of-the-art performance on multiple datasets in open-vocabulary semantic segmentation tasks. our proposed CLIPer obtains mIoU scores of 69.8% on VOC and 43.3% on Object when using ViT-L/14 backbone.
For further details, please check out our paper.
Please follow the code bellow to create the environment
conda create -n CLIPer python=3.9
conda activate CLIPer
pip install -r requirement.txt
Please struct the datasets as follows
datasets
├── ADEchallengeData2016
│ ├── images
│ │ ├── training
│ │ │ ├── ADE_train_00000001.jpg
│ │ ├── validation
│ │ │ ├── ADE_val_00000001.jpg
│ ├── annotations
│ │ ├── training
│ │ │ ├── ADE_train_00000001.png
│ │ ├── validation
│ │ │ ├── ADE_val_00000001.png
├── coco2014
│ ├── train2014
│ │ ├── COCO_train2014_000000000009.jpg
│ ├── val2014
│ │ ├── COCO_val2014_000000000042.jpg
│ ├── coco_seg_anno
│ │ ├── 000000000009.png
├── coco2017
│ ├── train2017
│ │ ├── 000000000009.jpg
│ ├── val2017
│ │ ├── 000000000139.jpg
│ ├── stuff_anno164
│ │ ├── train2017
│ │ │ ├── 000000000009.png
│ │ ├── val2017
│ │ │ ├── 000000000139.png
├── VOCdevkit
│ ├── VOC2010
│ │ ├── JPEGImages
│ │ │ ├── 2007_000027.jpg
│ │ ├── SegmentationClassContext
│ │ │ ├──2008_000002.png
│ ├── VOC2012
│ │ ├── JPEGImages
│ │ │ ├── 2007_000027.jpg
│ │ ├── SegmentationClassAug
│ │ │ ├──2007_000032.png
To evaluate our CLIPer, please enter the scripts folder and run the code
# select the config file to evaluate the code
# evaluate voc dataset with background
sh sh_ovs.sh ../scripts/config/vit-l-14/ovs_voc21.yaml
# evaluate voc dataset without background
sh sh_ovs.sh ../scripts/config/vit-l-14/ovs_voc20.yaml
# ...
Run the code in this repo, you should get similar results (reported in paper are shown in the parentheses) in the following table:
Encoder | VOC | Context | Object | VOC20 | Contex59 | Stuff | ADE |
---|---|---|---|---|---|---|---|
ViT-B/16 | 65.9(65.9) | 37.6(37.6) | 39.3(39.0) | 85.4(85.2) | 41.7(41.7) | 27.5(27.5) | 21.4(21.4) |
ViT-L/14 | 70.2(69.8) | 38.2(38.0) | 43.5(43.3) | 90.0(90.0) | 43.6(43.6) | 29.2(28.7) | 24.4(24.4) |
ViT-H/14 | 71.0 | 39.7 | 43.2 | 88.9 | 44.3 | 30.7 | 27.5 |
@misc{Sun_2024_CLIPer,
title={CLIPer: Hierarchically Improving Spatial Representation of CLIP for Open-Vocabulary Semantic Segmentation},
author={Lin Sun and Jiale Cao and Jin Xie and Xiaoheng Jiang and Yanwei Pang},
year={2024},
eprint={2411.13836},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2411.13836},
}