torch(vision) and lightly.api independence
This release includes some breaking changes, especially for our users of the the Lightly Worker
Please follow the migration guide to see version compatibility.
Breaking Changes
- Make lightly.api independent of torch(vision) (breaking).
- Validate the config created by the api (breaking).
- Fix scheduling jobs with config v2 (breaking).
Changes
- Add benchmarks results with new GaussianBlur implementation.
- Add transforms for all SSL models.
- Remove extra pooling layers from benchmarks.
Other
- Set creator on various endpoints in pip.
Models
- Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021
- Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- DCL: Decoupled Contrastive Learning, 2021
- DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021
- MAE: Masked Autoencoders Are Scalable Vision Learners, 2021
- MSN: Masked Siamese Networks for Label-Efficient Learning, 2022
- MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019
- NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021
- SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020
- SimMIM: A Simple Framework for Masked Image Modeling, 2021
- SimSiam: Exploring Simple Siamese Representation Learning, 2020
- SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022
- SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020
- TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022
- VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022
- VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022