Customizable Checkpoint Callbacks, Batch Shuffling and More
Customizable Checkpoint Callbacks, Batch Shuffling and More
Fixed download speed for image datasets.
lightly-magic
can now be used with trainer.max_epochs=0
.
Fixed the pytorch-lightning warning: "Passing a ModelCheckpoint instance to Trainer(checkpoint_callbacks=...) is deprecated since v1.1 and will no longer be supported in v1.3."
Customizable Checkpoint Callback
Checkpoint callbacks are now customizable (even from the command-line):
# save the 5 best models
lightly-train input_dir='data/' checkpoint_callback.save_top_k=5
# don't save the model of the last epoch
lightly-train input_dir='data/' checkpoint_callback.save_last=False
Batch Shuffling
Added batch shuffling to MoCo and SplitBatchNorm
to simulate multi-gpu behaviour.
Image Resizing
Images can be resized before uploading them to the web-app:
# no resizing (default)
lightly-upload input_dir='data/' dataset_id='XYZ' token='123' resize=-1
# resize such that shortest edge of the image is 128
lightly-upload input_dir='data/' dataset_id='XYZ' token='123' resize=128
# resize images to (128, 128)
lightly-upload input_dir='data/' dataset_id='XYZ' token='123' resize=[128,128]