$ python main.py --help
usage: main.py [-h] [--method-names METHOD_NAMES [METHOD_NAMES ...]]
[--mode {ops_params,fps,gpu_mem} [{ops_params,fps,gpu_mem} ...]]
A simple toolkit for counting the FLOPs/MACs, Parameters, FPS and GPU Memory of the model.
optional arguments:
-h, --help show this help message and exit
--method-names METHOD_NAMES [METHOD_NAMES ...]
The names of the methods you want to evaluate.
--mode {ops_params,fps,gpu_mem} [{ops_params,fps,gpu_mem} ...]
NOTE:
pip install fvcore
In methods
folder, I have provided some recent methods, i.e. CoNet, DANet, HDFNet, JL-DCF, and UC-Net, as the examples.
More functional improvements and suggestions are welcome.
An example:
python main.py --method-names zoomnet ugtr c2fnet ujsc pfnet mgl_r slsr sinet
- 2023-07-28:
- [New & Important] Update the library for count FLOPs/MACS from
pytorch-OpCounter
tofvcore
which can count FLOPs/MACs of the complex module, like Transformer. - Remove the useless
test
folder. - [Experimental Feature] Add the new feature for counting the peak inference GPU memory of the model.
- [New & Important] Update the library for count FLOPs/MACS from
- 2022-03-03: Add more methods, add the gpu warmup process in counting FPS and update the readme.
- 2021-09-29: Refactor again.
- 2021-08-31: Refactor.
- 2021-08-29: Create a new repository and upload the code.
@misc{MethodsCmp,
author = {Youwei Pang},
title = {MethodsCmp: A Simple Toolkit for Counting the FLOPs/MACs, Parameters and FPS of Pytorch-based Methods},
howpublished = {\url{https://github.com/lartpang/MethodsCmp}},
year = {2021}
}