VisionAgent is a library that helps you utilize agent frameworks to generate code to solve your vision task. Check out our discord for updates and roadmaps!
The fastest way to test out VisionAgent is to use our web application. You can find it here.
You can also run VisionAgent in a local Jupyter Notebook. Here are some examples of using VisionAgent:
Check out the notebooks folder for more examples.
To get started with the python library, you can install it using pip:
pip install vision-agent
export ANTHROPIC_API_KEY="your-api-key"
NOTE You must have the Anthropic API key set in your environment variables to use VisionAgent. If you don't have an Anthropic key you can use another provider like OpenAI or Ollama.
To get started you can just import the VisionAgent
and start chatting with it:
>>> from vision_agent.agent import VisionAgent
>>> agent = VisionAgent(verbosity=2)
>>> resp = agent("Hello")
>>> print(resp)
[{"role": "user", "content": "Hello"}, {"role": "assistant", "content": "{'thoughts': 'The user has greeted me. I will respond with a greeting and ask how I can assist them.', 'response': 'Hello! How can I assist you today?', 'let_user_respond': True}"}]
>>> resp.append({"role": "user", "content": "Can you count the number of people in this image?", "media": ["people.jpg"]})
>>> resp = agent(resp)
The chat messages are similar to OpenAI
's format with role
and content
keys but
in addition to those you can add media
which is a list of media files that can either
be images or video files.
You can also use VisionAgentCoder
to generate code for you:
>>> from vision_agent.agent import VisionAgentCoder
>>> agent = VisionAgentCoder(verbosity=2)
>>> code = agent("Count the number of people in this image", media="people.jpg")
You can use OllamaVisionAgentCoder
which uses Ollama as the backend. To get started
pull the models:
ollama pull llama3.2-vision
ollama pull mxbai-embed-large
Then you can use it just like you would use VisionAgentCoder
:
>>> from vision_agent.agent import OllamaVisionAgentCoder
>>> agent = OllamaVisionAgentCoder(verbosity=2)
>>> code = agent("Count the number of people in this image", media="people.jpg")
NOTE Smaller open source models like Llama 3.1 8B will not work well with VisionAgent. You will encounter many coding errors because it generates incorrect code or JSON decoding errors because it generates incorrect JSON. We recommend using larger models or Anthropic/OpenAI models.
VisionAgent
is an agent that can chat with you and call other tools or agents to
write vision code for you. You can interact with it like you would ChatGPT or any other
chatbot. The agent uses Clause-3.5 for it's LMM.
The message format is:
{
"role": "user",
"content": "Hello",
"media": ["image.jpg"]
}
Where role
can be user
, assistant
or observation
if the agent has executed a
function and needs to observe the output. content
is always the text message and
media
is a list of media files that can be images or videos that you want the agent
to examine.
When the agent responds, inside it's context
you will find the following data structure:
{
"thoughts": "The user has greeted me. I will respond with a greeting and ask how I can assist them.",
"response": "Hello! How can I assist you today?",
"let_user_respond": true
}
thoughts
are the thoughts the agent had when processing the message, response
is the
response it generated which could contain a python execution, and let_user_respond
is
a boolean that tells the agent if it should wait for the user to respond before
continuing, for example it may want to execute code and look at the output before
letting the user respond.
If you run chat_with_artifacts
you will also notice an Artifact
object. Artifact
's
are a way to sync files between local and remote environments. The agent will read and
write to the artifact object, which is just a pickle object, when it wants to save or
load files.
import vision_agent as va
from vision_agent.tools.meta_tools import Artifact
artifact = Artifact("artifact.pkl")
# you can store text files such as code or images in the artifact
with open("code.py", "r") as f:
artifacts["code.py"] = f.read()
with open("image.png", "rb") as f:
artifacts["image.png"] = f.read()
agent = va.agent.VisionAgent()
response, artifacts = agent.chat_with_artifacts(
[
{
"role": "user",
"content": "Can you write code to count the number of people in image.png",
}
],
artifacts=artifacts,
)
To test out things quickly, sometimes it's easier to run the streamlit app locally to
chat with VisionAgent
, you can run the following command:
pip install -r examples/chat/requirements.txt
export WORKSPACE=/path/to/your/workspace
export ZMQ_PORT=5555
streamlit run examples/chat/app.py
You can find more details about the streamlit app here, there are still some concurrency issues with the streamlit app so if you find it doing weird things clear your workspace and restart the app.
There are a variety of tools for the model or the user to use. Some are executed locally
while others are hosted for you. You can easily access them yourself, for example if
you want to run owl_v2_image
and visualize the output you can run:
import vision_agent.tools as T
import matplotlib.pyplot as plt
image = T.load_image("dogs.jpg")
dets = T.owl_v2_image("dogs", image)
# visualize the owl_v2_ bounding boxes on the image
viz = T.overlay_bounding_boxes(image, dets)
# plot the image in matplotlib or save it
plt.imshow(viz)
plt.show()
T.save_image(viz, "viz.png")
Or if you want to run on video data, for example track sharks and people at 10 FPS:
frames_and_ts = T.extract_frames_and_timestamps("sharks.mp4", fps=10)
# extract only the frames from frames and timestamps
frames = [f["frame"] for f in frames_and_ts]
# track the sharks and people in the frames, returns segmentation masks
track = T.florence2_sam2_video_tracking("shark, person", frames)
# plot the segmentation masks on the frames
viz = T.overlay_segmentation_masks(frames, track)
T.save_video(viz, "viz.mp4")
You can find all available tools in vision_agent/tools/tools.py
, however the
VisionAgent
will only utilizes a subset of tools that have been tested and provide
the best performance. Those can be found in the same file under the FUNCION_TOOLS
variable inside tools.py
.
If you can't find the tool you are looking for you can also add custom tools to the agent:
import vision_agent as va
import numpy as np
@va.tools.register_tool(imports=["import numpy as np"])
def custom_tool(image_path: str) -> str:
"""My custom tool documentation.
Parameters:
image_path (str): The path to the image.
Returns:
str: The result of the tool.
Example
-------
>>> custom_tool("image.jpg")
"""
return np.zeros((10, 10))
You need to ensure you call @va.tools.register_tool
with any imports it uses. Global
variables will not be captured by register_tool
so you need to include them in the
function. Make sure the documentation is in the same format above with description,
Parameters:
, Returns:
, and Example\n-------
. The VisionAgent
will use your
documentation when trying to determine when to use your tool. You can find an example
use case here for adding a custom tool. Note you may need to
play around with the prompt to ensure the model picks the tool when you want it to.
Can't find the tool you need and want us to host it? Check out our
vision-agent-tools repository where
we add the source code for all the tools used in VisionAgent
.
All of our agents are based off of LMMs or Large Multimodal Models. We provide a thin abstraction layer on top of the underlying provider APIs to be able to more easily handle media.
from vision_agent.lmm import AnthropicLMM
lmm = AnthropicLMM()
response = lmm("Describe this image", media=["apple.jpg"])
>>> "This is an image of an apple."
Or you can use the OpenAI
chat interaface and pass it other media like videos:
response = lmm(
[
{
"role": "user",
"content": "What's going on in this video?",
"media": ["video.mp4"]
}
]
)
Underneath the hood, VisionAgent
uses VisionAgentCoder
to generate code to solve
vision tasks. You can use VisionAgentCoder
directly to generate code if you want:
>>> from vision_agent.agent import VisionAgentCoder
>>> agent = VisionAgentCoder()
>>> code = agent("What percentage of the area of the jar is filled with coffee beans?", media="jar.jpg")
Which produces the following code:
from vision_agent.tools import load_image, florence2_sam2_image
def calculate_filled_percentage(image_path: str) -> float:
# Step 1: Load the image
image = load_image(image_path)
# Step 2: Segment the jar
jar_segments = florence2_sam2_image("jar", image)
# Step 3: Segment the coffee beans
coffee_beans_segments = florence2_sam2_image("coffee beans", image)
# Step 4: Calculate the area of the segmented jar
jar_area = 0
for segment in jar_segments:
jar_area += segment['mask'].sum()
# Step 5: Calculate the area of the segmented coffee beans
coffee_beans_area = 0
for segment in coffee_beans_segments:
coffee_beans_area += segment['mask'].sum()
# Step 6: Compute the percentage of the jar area that is filled with coffee beans
if jar_area == 0:
return 0.0 # To avoid division by zero
filled_percentage = (coffee_beans_area / jar_area) * 100
# Step 7: Return the computed percentage
return filled_percentage
To better understand how the model came up with it's answer, you can run it in debug mode by passing in the verbose argument:
>>> agent = VisionAgentCoder(verbosity=2)
You can also have it return more information by calling generate_code
. The format
of the input is a list of dictionaries with the keys role
, content
, and media
:
>>> results = agent.generate_code([{"role": "user", "content": "What percentage of the area of the jar is filled with coffee beans?", "media": ["jar.jpg"]}])
>>> print(results)
{
"code": "from vision_agent.tools import ..."
"test": "calculate_filled_percentage('jar.jpg')",
"test_result": "...",
"plans": {"plan1": {"thoughts": "..."}, ...},
"plan_thoughts": "...",
"working_memory": ...,
}
With this you can examine more detailed information such as the testing code, testing results, plan or working memory it used to complete the task.
You can have multi-turn conversations with vision-agent as well, giving it feedback on the code and having it update. You just need to add the code as a response from the assistant:
agent = va.agent.VisionAgentCoder(verbosity=2)
conv = [
{
"role": "user",
"content": "Are these workers wearing safety gear? Output only a True or False value.",
"media": ["workers.png"],
}
]
result = agent.generate_code(conv)
code = result["code"]
conv.append({"role": "assistant", "content": code})
conv.append(
{
"role": "user",
"content": "Can you also return the number of workers wearing safety gear?",
}
)
result = agent.generate_code(conv)
If you wish to run your code on the E2B backend, make sure you have your E2B_API_KEY
set and then set CODE_SANDBOX_RUNTIME=e2b
in your environment variables. This will
run all the agent generated code on the E2B backend.
AnthropicVisionAgentCoder
uses Anthropic. To get started you just need to get an
Anthropic API key and set it in your environment variables:
export ANTHROPIC_API_KEY="your-api-key"
Because Anthropic does not support embedding models, the default embedding model used is the OpenAI model so you will also need to set your OpenAI API key:
export OPEN_AI_API_KEY="your-api-key"
Usage is the same as VisionAgentCoder
:
>>> import vision_agent as va
>>> agent = va.agent.AnthropicVisionAgentCoder()
>>> agent("Count the apples in the image", media="apples.jpg")
OpenAIVisionAgentCoder
uses OpenAI. To get started you just need to get an OpenAI API
key and set it in your environment variables:
export OPEN_AI_API_KEY="your-api-key"
Usage is the same as VisionAgentCoder
:
>>> import vision_agent as va
>>> agent = va.agent.OpenAIVisionAgentCoder()
>>> agent("Count the apples in the image", media="apples.jpg")
OllamaVisionAgentCoder
uses Ollama. To get started you must download a few models:
ollama pull llama3.2-vision
ollama pull mxbai-embed-large
llama3.2-vision
is used for the OllamaLMM
for OllamaVisionAgentCoder
. Becuase
llama3.2-vision
is a smaller model you WILL see performance degredation compared to
using Anthropic or OpenAI models. mxbai-embed-large
is the embedding model used to
look up tools. You can use it just like you would use VisionAgentCoder
:
>>> import vision_agent as va
>>> agent = va.agent.OllamaVisionAgentCoder()
>>> agent("Count the apples in the image", media="apples.jpg")
WARNING: VisionAgent doesn't work well unless the underlying LMM is sufficiently powerful. Do not expect good results or even working code with smaller models like Llama 3.1 8B.
AzureVisionAgentCoder
uses Azure OpenAI models. To get started follow the Azure Setup
section below. You can use it just like you would use VisionAgentCoder
:
>>> import vision_agent as va
>>> agent = va.agent.AzureVisionAgentCoder()
>>> agent("Count the apples in the image", media="apples.jpg")
If you want to use Azure OpenAI models, you need to have two OpenAI model deployments:
- OpenAI GPT-4o model
- OpenAI text embedding model
Then you can set the following environment variables:
export AZURE_OPENAI_API_KEY="your-api-key"
export AZURE_OPENAI_ENDPOINT="your-endpoint"
# The deployment name of your Azure OpenAI chat model
export AZURE_OPENAI_CHAT_MODEL_DEPLOYMENT_NAME="your_gpt4o_model_deployment_name"
# The deployment name of your Azure OpenAI text embedding model
export AZURE_OPENAI_EMBEDDING_MODEL_DEPLOYMENT_NAME="your_embedding_model_deployment_name"
NOTE: make sure your Azure model deployment have enough quota (token per minute) to support it. The default value 8000TPM is not enough.
You can then run VisionAgent using the Azure OpenAI models:
import vision_agent as va
agent = va.agent.AzureVisionAgentCoder()
- Visit the OpenAI API platform to sign up for an API key.
- Follow the instructions to purchase and manage your API credits.
- Ensure your API key is correctly configured in your project settings.
Failure to have sufficient API credits may result in limited or no functionality for the features that rely on the OpenAI API. For more details on managing your API usage and credits, please refer to the OpenAI API documentation.
If you keep seeing a ModuleNotFoundError
when VisionAgent generating code and seeing VisionAgent got stuck and could not install the missing dependencies, you can manually add the missing dependencies into your Python environment by: pip install <missing_package_name>
. And then try generating code again.