Skip to content

Two-Stage Difference-in-Differences following Gardner (2021)

Notifications You must be signed in to change notification settings

kylebutts/did2s_stata

Repository files navigation

did2s

The goal of did2s is to estimate TWFE models without running into the problem caused by staggered treatment adoption. For details on the methodology, view this vignette

Installation

You can install did2s from github with:

net install did2s, replace from("https://raw.githubusercontent.com/kylebutts/did2s_stata/main/ado/")
* ssc install did2s

Two-stage Difference-in-differences (Gardner 2021)

I have created an Stata package with the help of John Gardner to estimate the two-stage procedure. The command is did2s which estimates the two-stage did procedure. This function requires the following syntax

did2s depvar [if] [in] [weight], first_stage(varlist) second_stage(varlist) treatment(varname) cluster(varname)

  • first_stage: formula for first stage, can include fixed effects and covariates, but do not include treatment variable(s)!
  • second_stage: List of treatment variables. This could be, for example a 0/1 treatment dummy, a set of event-study leads/lags, or a continuous treatment variable
  • treatment: This has to be the 0/1 treatment variable that marks when treatment turns on for a unit. If you suspect anticipation, see note above for accounting for this.
  • cluster: Which variable to cluster on.

To view the documentation, type help did2s into the console.

Example Usage

********************************************************************************
* Static
********************************************************************************

use data/df_het.dta
    
*-> two-stage manually (note standard errors are off)

* First-stage regression 
qui reg dep_var i.state i.year if treat == 0

* y_{it} - \hat{y}_{it}(\infty)
qui predict adj, residuals

* Second-stage regression
reg adj i.treat, cluster(state) nocons
Linear regression                               Number of obs     =     31,000
                                                F(1, 39)          =    2803.10
                                                Prob > F          =     0.0000
                                                R-squared         =     0.3776
                                                Root MSE          =     1.7505

                                 (Std. err. adjusted for 40 clusters in state)
------------------------------------------------------------------------------
             |               Robust
         adj | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
     1.treat |   2.380156   .0449558    52.94   0.000     2.289224    2.471087
------------------------------------------------------------------------------
*-> With did2s standard error correction    
did2s dep_var, first_stage(i.state i.year) second_stage(i.treat) treatment(treat) cluster(state)
                                  (Std. err. adjusted for clustering on state)
------------------------------------------------------------------------------
             | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
     1.treat |   2.380156   .0614383    38.74   0.000     2.259739    2.500573
------------------------------------------------------------------------------

You can also do event-study by changing the second_stage

********************************************************************************
* Dynamic
********************************************************************************

* can not have negatives in factor variable
qui gen rel_year_shift = rel_year + 20
qui replace rel_year_shift = 100 if rel_year_shift == .

did2s dep_var, first_stage(i.state i.year) second_stage(ib100.rel_year_shift) treatment(treat) cluster(state)
                                    (Std. err. adjusted for clustering on state)
--------------------------------------------------------------------------------
               | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
---------------+----------------------------------------------------------------
rel_year_shift |
            0  |    .049467   .0795074     0.62   0.534    -.1063647    .2052986
            1  |   .1550051   .0793407     1.95   0.051    -.0004999      .31051
            2  |   .0429258   .0861871     0.50   0.618    -.1259978    .2118494
            3  |   .0798003   .0804802     0.99   0.321    -.0779379    .2375386
            4  |   .1023325   .0882446     1.16   0.246    -.0706237    .2752886
            5  |   .2164395   .0947508     2.28   0.022     .0307313    .4021477
            6  |   .1707938    .083863     2.04   0.042     .0064253    .3351622
            7  |   .0939678   .0805816     1.17   0.244    -.0639692    .2519048
            8  |    .089857   .0839759     1.07   0.285    -.0747327    .2544467
            9  |   .1976289   .0799969     2.47   0.013     .0408378      .35442
           10  |   .0952583   .0619518     1.54   0.124    -.0261651    .2166817
           11  |   .0512636   .0586073     0.87   0.382    -.0636046    .1661318
           12  |   .0877603   .0403517     2.17   0.030     .0086725    .1668482
           13  |   .1542402   .0439602     3.51   0.000     .0680799    .2404006
           14  |   .0220904   .0509833     0.43   0.665    -.0778349    .1220158
           15  |    .035128   .0489484     0.72   0.473    -.0608091    .1310651
           16  |  -.0508368   .0504833    -1.01   0.314    -.1497822    .0481087
           17  |  -.0094032   .0495642    -0.19   0.850    -.1065472    .0877408
           18  |   .0088808   .0564702     0.16   0.875    -.1017987    .1195602
           19  |   .1179048   .0515519     2.29   0.022      .016865    .2189447
           20  |   1.726992   .0826976    20.88   0.000     1.564907    1.889076
           21  |   1.752138   .0798351    21.95   0.000     1.595664    1.908612
           22  |   1.871223   .0929743    20.13   0.000     1.688997    2.053449
           23  |   1.918305   .0755331    25.40   0.000     1.770263    2.066347
           24  |   1.939803   .0841477    23.05   0.000     1.774876    2.104729
           25  |   2.145797   .0846879    25.34   0.000     1.979812    2.311782
           26  |   2.180307   .0920339    23.69   0.000     1.999923     2.36069
           27  |   2.347555   .0818049    28.70   0.000      2.18722    2.507889
           28  |   2.412952   .0764437    31.57   0.000     2.263125    2.562779
           29  |   2.619597   .1075448    24.36   0.000     2.408813    2.830381
           30  |   2.680793   .0954052    28.10   0.000     2.493802    2.867784
           31  |   2.712427    .120355    22.54   0.000     2.476536    2.948319
           32  |   2.671961   .1533243    17.43   0.000     2.371451    2.972471
           33  |    2.65589   .1224654    21.69   0.000     2.415862    2.895917
           34  |   2.754846   .1293217    21.30   0.000      2.50138    3.008312
           35  |   2.823183   .1341382    21.05   0.000     2.560277    3.086089
           36  |   2.694037   .1199969    22.45   0.000     2.458847    2.929226
           37  |   2.896575   .1265512    22.89   0.000     2.648539     3.14461
           38  |   3.130081   .1160177    26.98   0.000     2.902691    3.357472
           39  |    3.23066   .1235224    26.15   0.000      2.98856    3.472759
           40  |   3.308015   .1120092    29.53   0.000     3.088481    3.527549
--------------------------------------------------------------------------------

This method works with exogenous time-varying covariates as well!

********************************************************************************
* Castle Doctrine
********************************************************************************

use https://github.com/scunning1975/mixtape/raw/master/castle.dta, clear

* Define Covariates
global demo blackm_15_24 whitem_15_24 blackm_25_44 whitem_25_44

* No Covariates
did2s l_homicide [aweight=popwt], first_stage(i.sid i.year) second_stage(i.post) treatment(post) cluster(sid)

* Covariates
did2s l_homicide [aweight=popwt], first_stage(i.sid i.year $demo) second_stage(i.post) treatment(post) cluster(sid)
                                    (Std. err. adjusted for clustering on sid)
------------------------------------------------------------------------------
             | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
      1.post |   .0751416   .0353795     2.12   0.034     .0057991    .1444842
------------------------------------------------------------------------------

                                    (Std. err. adjusted for clustering on sid)
------------------------------------------------------------------------------
             | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
      1.post |   .0760161   .0324715     2.34   0.019     .0123731    .1396591
------------------------------------------------------------------------------

Large Datasets or Many Fixed Effects

There are some situations where standard errors can not be calculate analytically in memory. The reason for this is that the analytic standard errors require the creation of the matrix containing all the fixed effects used in estimation. When there are a lot of observations and/or many fixed effects, this matrix can’t be stored in memory.

In this case, it’s possible to obtain standard errors via bootstrapping a custom program. Here is an example for the example data. You could spend time to make the command more programmable with args, but I find it easier to just write the estimation out.

use data/df_het.dta, clear

egen unique_id = group(state unit)

capture program drop did2s_est

program did2s_est, rclass
    version 13.0
    regress dep_var i.new_id i.year if treat == 0
    tempvar dep_var_resid
    predict `dep_var_resid', residuals
    regress `dep_var_resid' ib0.treat, nocons
end

xtset unique_id year
sort unique_id year
bootstrap, cluster(state) idcluster(new_id) group(unique_id) reps(100): did2s_est
Panel variable: unique_id (strongly balanced)
 Time variable: year, 1990 to 2020
         Delta: 1 unit


(running did2s_est on estimation sample)

Bootstrap replications (100): .........10.........20.........30.........40.........50.........60.........70.........80.........90.........100 done

Linear regression                                      Number of obs =  31,000
                                                       Replications  =     100
                                                       Wald chi2(1)  = 1568.60
                                                       Prob > chi2   =  0.0000
                                                       R-squared     =  0.3776
                                                       Adj R-squared =  0.3776
                                                       Root MSE      =  1.7505

                                  (Replications based on 40 clusters in state)
------------------------------------------------------------------------------
             |   Observed   Bootstrap                         Normal-based
    __000001 | coefficient  std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
     1.treat |   2.380156   .0600965    39.61   0.000     2.262369    2.497943
------------------------------------------------------------------------------

References

Gardner, John. 2021. “Two-Stage Difference-in-Differences.” Working Paper. https://jrgcmu.github.io/2sdd_current.pdf.

About

Two-Stage Difference-in-Differences following Gardner (2021)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published