This work is under review for Special issue for Pattern Recognition letters on Graphonomics.
Currently the network can be trained on synthetic and DIBCO dataset:
Datasets | Input Resolution | Output Resolution^ | # of classes |
---|---|---|---|
Synthetic | 128x256 | 16x32 | 2 |
DIBCO | 128x256 | 16x32 | 2 |
^ is the encoder output resolution; decoder output resolution is the same as that of the input image. The datasets are avaialble here
- run.lua : main file
- opts.lua : contains all the input options used by the tranining script
- data : data loaders for loading datasets
- models : all the model architectures are defined here
- train.lua : loading of models and error calculation
- test.lua : calculate testing error and save confusion matrices
th run.lua --dataset sn --year 0000 --datapath ../datasets/xSynthetic/128x256 --cachepath ../resources/Dibco/128x256/cache/encoder --model models/encoder.lua --save ../resources/Dibco/128x256/trained/encoder --imHeight 128 --imWidth 256 --labelHeight 16 --labelWidth 32 --batchSize 30 --maxepoch 20
th run.lua --dataset sn --year 0000 --datapath ../datasets/xSynthetic/128x256 --cachepath ../resources/Dibco/128x256/cache/decoder --model models/decoder.lua --save ../resources/Dibco/128x256/trained/decoder --imHeight 128 --imWidth 256 --labelHeight 128 --labelWidth 256 --batchSize 30 --maxepoch 20 --CNNModel ../resources/Dibco/128x256/trained/encoder
th run.lua --dataset db --year 2009 --datapath ../datasets/xDibco/128x256 --cachepath ../resources/xDibco/128x256/cache/encoder --model models/encoder.lua --save ../resources/xDibco/128x256/trained/encoder --imHeight 128 --imWidth 256 --labelHeight 16 --labelWidth 32 --batchSize 30 --maxepoch 20 --ptModel ../resources/xDibco/128x256/trained/encoder/model-0.net
th run.lua --dataset db --year 2009 --datapath ../datasets/xDibco/128x256 --cachepath ../resources/xDibco/128x256/cache/decoder --model models/decoder.lua --save ../resources/xDibco/128x256/trained/decoder --imHeight 128 --imWidth 256 --labelHeight 128 --labelWidth 256 --batchSize 30 --maxepoch 20 --CNNModel ../resources/xDibco/128x256/trained/encoder --ptModel ../resources/xDibco/128x256/trained/decoder/model-0.net
th run.lua --dataset db --year 2009 --datapath ../datasets/xDibco/128x256 --cachepath ../resources/xDibco/128x256/cache/decoder --model models/pdNet.lua --save ../resources/xDibco/128x256/trained/pdNet --imHeight 128 --imWidth 256 --labelHeight 128 --labelWidth 256 --batchSize 20 --CNNModel ../resources/xDibco/128x256/trained/decoder --maxepoch 20
cd ../visualize
th demo_PDdibco.lua -i ../datasets/xDibco/128x256/valid -d ../resources/xDibco/128x256/trained/ -m pdNet --year 2009 --dataset db -o ../datasets/xDibco/xOutput_pdnet_128x256 --devID 2