Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update IPEX Libs #1086

Merged
merged 2 commits into from
Jan 31, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 10 additions & 5 deletions library/ipex/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -125,9 +125,13 @@ def ipex_init(): # pylint: disable=too-many-statements

# AMP:
torch.cuda.amp = torch.xpu.amp
torch.is_autocast_enabled = torch.xpu.is_autocast_xpu_enabled
torch.get_autocast_gpu_dtype = torch.xpu.get_autocast_xpu_dtype

if not hasattr(torch.cuda.amp, "common"):
torch.cuda.amp.common = contextlib.nullcontext()
torch.cuda.amp.common.amp_definitely_not_available = lambda: False

try:
torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler
except Exception: # pylint: disable=broad-exception-caught
Expand All @@ -151,15 +155,16 @@ def ipex_init(): # pylint: disable=too-many-statements
torch.cuda.has_half = True
torch.cuda.is_bf16_supported = lambda *args, **kwargs: True
torch.cuda.is_fp16_supported = lambda *args, **kwargs: True
torch.version.cuda = "11.7"
torch.cuda.get_device_capability = lambda *args, **kwargs: [11,7]
torch.cuda.get_device_properties.major = 11
torch.cuda.get_device_properties.minor = 7
torch.backends.cuda.is_built = lambda *args, **kwargs: True
torch.version.cuda = "12.1"
torch.cuda.get_device_capability = lambda *args, **kwargs: [12,1]
torch.cuda.get_device_properties.major = 12
torch.cuda.get_device_properties.minor = 1
torch.cuda.ipc_collect = lambda *args, **kwargs: None
torch.cuda.utilization = lambda *args, **kwargs: 0

ipex_hijacks()
if not torch.xpu.has_fp64_dtype():
if not torch.xpu.has_fp64_dtype() or os.environ.get('IPEX_FORCE_ATTENTION_SLICE', None) is not None:
try:
from .diffusers import ipex_diffusers
ipex_diffusers()
Expand Down
2 changes: 2 additions & 0 deletions library/ipex/attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,6 +124,7 @@ def torch_bmm_32_bit(input, mat2, *, out=None):
)
else:
return original_torch_bmm(input, mat2, out=out)
torch.xpu.synchronize(input.device)
return hidden_states

original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
Expand Down Expand Up @@ -172,4 +173,5 @@ def scaled_dot_product_attention_32_bit(query, key, value, attn_mask=None, dropo
)
else:
return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal)
torch.xpu.synchronize(query.device)
return hidden_states
2 changes: 2 additions & 0 deletions library/ipex/diffusers.py
Original file line number Diff line number Diff line change
Expand Up @@ -149,6 +149,7 @@ def __call__(self, attn: Attention, hidden_states: torch.FloatTensor,

hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = attn_slice
del attn_slice
torch.xpu.synchronize(query.device)
else:
query_slice = query[start_idx:end_idx]
key_slice = key[start_idx:end_idx]
Expand Down Expand Up @@ -283,6 +284,7 @@ def __call__(self, attn: Attention, hidden_states: torch.FloatTensor,

hidden_states[start_idx:end_idx] = attn_slice
del attn_slice
torch.xpu.synchronize(query.device)
else:
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
Expand Down
78 changes: 64 additions & 14 deletions library/ipex/hijacks.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,11 @@
import contextlib
import os
from functools import wraps
from contextlib import nullcontext
import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
import numpy as np

device_supports_fp64 = torch.xpu.has_fp64_dtype()

# pylint: disable=protected-access, missing-function-docstring, line-too-long, unnecessary-lambda, no-else-return

Expand All @@ -11,7 +16,7 @@ def __new__(cls, module, device_ids=None, output_device=None, dim=0): # pylint:
return module.to("xpu")

def return_null_context(*args, **kwargs): # pylint: disable=unused-argument
return contextlib.nullcontext()
return nullcontext()

@property
def is_cuda(self):
Expand All @@ -25,15 +30,17 @@ def return_xpu(device):


# Autocast
original_autocast = torch.autocast
def ipex_autocast(*args, **kwargs):
if len(args) > 0 and args[0] == "cuda":
return original_autocast("xpu", *args[1:], **kwargs)
original_autocast_init = torch.amp.autocast_mode.autocast.__init__
@wraps(torch.amp.autocast_mode.autocast.__init__)
def autocast_init(self, device_type, dtype=None, enabled=True, cache_enabled=None):
if device_type == "cuda":
return original_autocast_init(self, device_type="xpu", dtype=dtype, enabled=enabled, cache_enabled=cache_enabled)
else:
return original_autocast(*args, **kwargs)
return original_autocast_init(self, device_type=device_type, dtype=dtype, enabled=enabled, cache_enabled=cache_enabled)

# Latent Antialias CPU Offload:
original_interpolate = torch.nn.functional.interpolate
@wraps(torch.nn.functional.interpolate)
def interpolate(tensor, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False): # pylint: disable=too-many-arguments
if antialias or align_corners is not None:
return_device = tensor.device
Expand All @@ -44,15 +51,29 @@ def interpolate(tensor, size=None, scale_factor=None, mode='nearest', align_corn
return original_interpolate(tensor, size=size, scale_factor=scale_factor, mode=mode,
align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias)


# Diffusers Float64 (Alchemist GPUs doesn't support 64 bit):
original_from_numpy = torch.from_numpy
@wraps(torch.from_numpy)
def from_numpy(ndarray):
if ndarray.dtype == float:
return original_from_numpy(ndarray.astype('float32'))
else:
return original_from_numpy(ndarray)

if torch.xpu.has_fp64_dtype():
original_as_tensor = torch.as_tensor
@wraps(torch.as_tensor)
def as_tensor(data, dtype=None, device=None):
if check_device(device):
device = return_xpu(device)
if isinstance(data, np.ndarray) and data.dtype == float and not (
(isinstance(device, torch.device) and device.type == "cpu") or (isinstance(device, str) and "cpu" in device)):
return original_as_tensor(data, dtype=torch.float32, device=device)
else:
return original_as_tensor(data, dtype=dtype, device=device)


if device_supports_fp64 and os.environ.get('IPEX_FORCE_ATTENTION_SLICE', None) is None:
original_torch_bmm = torch.bmm
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
else:
Expand All @@ -66,20 +87,25 @@ def from_numpy(ndarray):


# Data Type Errors:
@wraps(torch.bmm)
def torch_bmm(input, mat2, *, out=None):
if input.dtype != mat2.dtype:
mat2 = mat2.to(input.dtype)
return original_torch_bmm(input, mat2, out=out)

@wraps(torch.nn.functional.scaled_dot_product_attention)
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False):
if query.dtype != key.dtype:
key = key.to(dtype=query.dtype)
if query.dtype != value.dtype:
value = value.to(dtype=query.dtype)
if attn_mask is not None and query.dtype != attn_mask.dtype:
attn_mask = attn_mask.to(dtype=query.dtype)
return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal)

# A1111 FP16
original_functional_group_norm = torch.nn.functional.group_norm
@wraps(torch.nn.functional.group_norm)
def functional_group_norm(input, num_groups, weight=None, bias=None, eps=1e-05):
if weight is not None and input.dtype != weight.data.dtype:
input = input.to(dtype=weight.data.dtype)
Expand All @@ -89,6 +115,7 @@ def functional_group_norm(input, num_groups, weight=None, bias=None, eps=1e-05):

# A1111 BF16
original_functional_layer_norm = torch.nn.functional.layer_norm
@wraps(torch.nn.functional.layer_norm)
def functional_layer_norm(input, normalized_shape, weight=None, bias=None, eps=1e-05):
if weight is not None and input.dtype != weight.data.dtype:
input = input.to(dtype=weight.data.dtype)
Expand All @@ -98,6 +125,7 @@ def functional_layer_norm(input, normalized_shape, weight=None, bias=None, eps=1

# Training
original_functional_linear = torch.nn.functional.linear
@wraps(torch.nn.functional.linear)
def functional_linear(input, weight, bias=None):
if input.dtype != weight.data.dtype:
input = input.to(dtype=weight.data.dtype)
Expand All @@ -106,6 +134,7 @@ def functional_linear(input, weight, bias=None):
return original_functional_linear(input, weight, bias=bias)

original_functional_conv2d = torch.nn.functional.conv2d
@wraps(torch.nn.functional.conv2d)
def functional_conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
if input.dtype != weight.data.dtype:
input = input.to(dtype=weight.data.dtype)
Expand All @@ -115,6 +144,7 @@ def functional_conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1,

# A1111 Embedding BF16
original_torch_cat = torch.cat
@wraps(torch.cat)
def torch_cat(tensor, *args, **kwargs):
if len(tensor) == 3 and (tensor[0].dtype != tensor[1].dtype or tensor[2].dtype != tensor[1].dtype):
return original_torch_cat([tensor[0].to(tensor[1].dtype), tensor[1], tensor[2].to(tensor[1].dtype)], *args, **kwargs)
Expand All @@ -123,6 +153,7 @@ def torch_cat(tensor, *args, **kwargs):

# SwinIR BF16:
original_functional_pad = torch.nn.functional.pad
@wraps(torch.nn.functional.pad)
def functional_pad(input, pad, mode='constant', value=None):
if mode == 'reflect' and input.dtype == torch.bfloat16:
return original_functional_pad(input.to(torch.float32), pad, mode=mode, value=value).to(dtype=torch.bfloat16)
Expand All @@ -131,89 +162,107 @@ def functional_pad(input, pad, mode='constant', value=None):


original_torch_tensor = torch.tensor
def torch_tensor(*args, device=None, **kwargs):
@wraps(torch.tensor)
def torch_tensor(data, *args, dtype=None, device=None, **kwargs):
if check_device(device):
return original_torch_tensor(*args, device=return_xpu(device), **kwargs)
else:
return original_torch_tensor(*args, device=device, **kwargs)
device = return_xpu(device)
if not device_supports_fp64:
if (isinstance(device, torch.device) and device.type == "xpu") or (isinstance(device, str) and "xpu" in device):
if dtype == torch.float64:
dtype = torch.float32
elif dtype is None and (hasattr(data, "dtype") and (data.dtype == torch.float64 or data.dtype == float)):
dtype = torch.float32
return original_torch_tensor(data, *args, dtype=dtype, device=device, **kwargs)

original_Tensor_to = torch.Tensor.to
@wraps(torch.Tensor.to)
def Tensor_to(self, device=None, *args, **kwargs):
if check_device(device):
return original_Tensor_to(self, return_xpu(device), *args, **kwargs)
else:
return original_Tensor_to(self, device, *args, **kwargs)

original_Tensor_cuda = torch.Tensor.cuda
@wraps(torch.Tensor.cuda)
def Tensor_cuda(self, device=None, *args, **kwargs):
if check_device(device):
return original_Tensor_cuda(self, return_xpu(device), *args, **kwargs)
else:
return original_Tensor_cuda(self, device, *args, **kwargs)

original_UntypedStorage_init = torch.UntypedStorage.__init__
@wraps(torch.UntypedStorage.__init__)
def UntypedStorage_init(*args, device=None, **kwargs):
if check_device(device):
return original_UntypedStorage_init(*args, device=return_xpu(device), **kwargs)
else:
return original_UntypedStorage_init(*args, device=device, **kwargs)

original_UntypedStorage_cuda = torch.UntypedStorage.cuda
@wraps(torch.UntypedStorage.cuda)
def UntypedStorage_cuda(self, device=None, *args, **kwargs):
if check_device(device):
return original_UntypedStorage_cuda(self, return_xpu(device), *args, **kwargs)
else:
return original_UntypedStorage_cuda(self, device, *args, **kwargs)

original_torch_empty = torch.empty
@wraps(torch.empty)
def torch_empty(*args, device=None, **kwargs):
if check_device(device):
return original_torch_empty(*args, device=return_xpu(device), **kwargs)
else:
return original_torch_empty(*args, device=device, **kwargs)

original_torch_randn = torch.randn
@wraps(torch.randn)
def torch_randn(*args, device=None, **kwargs):
if check_device(device):
return original_torch_randn(*args, device=return_xpu(device), **kwargs)
else:
return original_torch_randn(*args, device=device, **kwargs)

original_torch_ones = torch.ones
@wraps(torch.ones)
def torch_ones(*args, device=None, **kwargs):
if check_device(device):
return original_torch_ones(*args, device=return_xpu(device), **kwargs)
else:
return original_torch_ones(*args, device=device, **kwargs)

original_torch_zeros = torch.zeros
@wraps(torch.zeros)
def torch_zeros(*args, device=None, **kwargs):
if check_device(device):
return original_torch_zeros(*args, device=return_xpu(device), **kwargs)
else:
return original_torch_zeros(*args, device=device, **kwargs)

original_torch_linspace = torch.linspace
@wraps(torch.linspace)
def torch_linspace(*args, device=None, **kwargs):
if check_device(device):
return original_torch_linspace(*args, device=return_xpu(device), **kwargs)
else:
return original_torch_linspace(*args, device=device, **kwargs)

original_torch_Generator = torch.Generator
@wraps(torch.Generator)
def torch_Generator(device=None):
if check_device(device):
return original_torch_Generator(return_xpu(device))
else:
return original_torch_Generator(device)

original_torch_load = torch.load
@wraps(torch.load)
def torch_load(f, map_location=None, pickle_module=None, *, weights_only=False, mmap=None, **kwargs):
if check_device(map_location):
return original_torch_load(f, map_location=return_xpu(map_location), pickle_module=pickle_module, weights_only=weights_only, mmap=mmap, **kwargs)
else:
return original_torch_load(f, map_location=map_location, pickle_module=pickle_module, weights_only=weights_only, mmap=mmap, **kwargs)


# Hijack Functions:
def ipex_hijacks():
torch.tensor = torch_tensor
Expand All @@ -232,7 +281,7 @@ def ipex_hijacks():
torch.backends.cuda.sdp_kernel = return_null_context
torch.nn.DataParallel = DummyDataParallel
torch.UntypedStorage.is_cuda = is_cuda
torch.autocast = ipex_autocast
torch.amp.autocast_mode.autocast.__init__ = autocast_init

torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention
torch.nn.functional.group_norm = functional_group_norm
Expand All @@ -244,5 +293,6 @@ def ipex_hijacks():

torch.bmm = torch_bmm
torch.cat = torch_cat
if not torch.xpu.has_fp64_dtype():
if not device_supports_fp64:
torch.from_numpy = from_numpy
torch.as_tensor = as_tensor