This repository contains example code snippets showing how Amazon Textract and other AWS services can be used to get insights from documents.
python3 01-detect-text-local.py
For examples that use S3 bucket, upload sample images to an S3 bucket and update variable "s3BucketName" in the example before running it.
Argument | Description |
---|---|
01-detect-text-local.py | Example showing processing a document on local machine. |
02-detect-text-s3.py | Example showing processing a document in Amazon S3 bucket. |
03-reading-order.py | Example showing printing document in reading order. |
04-nlp-comprehend.py | Example showing detecting entities and sentiment. |
05-nlp-medical.py | Example showing detecting medical entities. |
06-translate.py | Example showing translation of documents. |
07-search.py | Example showing document indexing in Elasticsearch. |
08-forms.py | Example showing form (key/value) processing. |
09-forms-redaction.py | Example showing redacting information in document. |
10-tables.py | Example showing table processing. |
11-tables-expense.py | Example showing validation of table data. |
12-pdf-text.py | Example showing PDF document processing. |
Usage: dotnet run [--switch]
To run this console app, use the following valid switches one at a time:
--detect-text-local
--detect-text-s3
--pdf-text
--forms
--forms-redaction
--tables
--tables-expense
--reading-order
--nlp-comprehend
--nlp-medical
--translate
--search
e.g. dotnet run --detect-text-s3
Go to src-csharp
folder for .NET samples
Argument | Description |
---|---|
--detect-text-local | Example showing processing a document on local machine. |
--detect-text-s3 | Example showing processing a document in Amazon S3 bucket. |
--pdf-text | Example showing PDF document processing. |
--forms | Example showing form (key/value) processing. |
--forms-redaction | Example showing redacting information in document. |
--tables | Example showing table processing. |
--tables-expense | Example showing validation of table data. |
--reading-order | Example showing printing document in reading order. |
--nlp-comprehend | Example showing detecting entities and sentiment. |
--nlp-medical | Example showing detecting medical entities. |
--translate | Example showing translation of documents. |
--search | Example showing document indexing in Elasticsearch. |
- Large scale document processing with Amazon Textract - Reference Architecture
- Batch processing tool
- JSON response parser
This sample code is made available under the MIT-0 license. See the LICENSE file.