Skip to content

This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

License

Notifications You must be signed in to change notification settings

kli017/EEND-vector-clustering

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ISCSLP2022-CSSD-Challenge

In this work we describe the EEND vector clustering based speaker diarization system we implemeted in ISCSLP2022 CSSD Challenge. In order to get a competitive result we investigated serveral aspect including:

(1) the method for simulating natural conversation speech data;(2) cite conformer as the encoder to capture local features;(3)use 1d convolution as subsampling and upsampling (4) some tricks of loss funtion; (5) model average;(6) use Spectural Clustering in embdding cluter. On ISCSLP 2022 evaluation dataset with the CDER metric our system achieved 8.1%.

New Feature

conformer based encoder added

EEND-vector clustering

The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates two complementary major diarization approaches, i.e., traditional clustering-based and emerging end-to-end neural network-based approaches, to make the best of both worlds. In [1] it is shown that the EEND-vector clustering outperforms EEND when the recording is long (e.g., more than 5 min), while in [2] it is shown based on CALLHOME data that it outperforms x-vector clustering and EEND-EDA especially when the number of speakers in recordings is large.

This repository contains an example implementation of the EEND-vector clustering based on Pytorch to reproduce the results in [2], i.e., the CALLHOME experiments. For the trainer, we use Padertorch. This repository is implemented based on EEND and relies on some useful functions provided therein.

References

[1] Keisuke Kinoshita, Marc Delcroix, and Naohiro Tawara, "Integrating end-to-end neural and clustering-based diarization: Getting the best of both worlds," Proc. ICASSP, pp. 7198–7202, 2021

[2] Keisuke Kinoshita, Marc Delcroix, and Naohiro Tawara, "Advances in integration of end-to-end neural and clustering-based diarization for real conversational speech," Proc. Interspeech, 2021 (to appear)

Citation

@inproceedings{eend-vector-clustering,
 author = {Keisuke Kinoshita and Marc Delcroix and Naohiro Tawara},
 title = {Integrating End-to-End Neural and Clustering-Based Diarization: Getting the Best of Both Worlds},
 booktitle = {{ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}},
 pages={7198-7202}
 year = {2021}
}

Install tools

Requirements

  • NVIDIA CUDA GPU
  • CUDA Toolkit (version == 9.2, 10.1 or 10.2)

Install kaldi and python environment

cd tools
make
  • This command builds kaldi at tools/kaldi
    • if you want to use pre-build kaldi
      cd tools
      make KALDI=<existing_kaldi_root>
      This option make a symlink at tools/kaldi
  • This command extracts miniconda3 at tools/miniconda3, and creates conda envirionment named 'eend'
  • Then, installs Pytorch and Padertorch into 'eend' environment
  • Then, clones EEND to reference symbolic links stored under eend/, egs/ and utils/

Test recipe (mini_librispeech)

Configuration

  • Modify egs/mini_librispeech/v1/cmd.sh according to your job schedular. If you use your local machine, use "run.pl" (default). If you use Grid Engine, use "queue.pl" If you use SLURM, use "slurm.pl". For more information about cmd.sh see http://kaldi-asr.org/doc/queue.html.

Run data preparation, training, inference, and scoring

cd egs/mini_librispeech/v1
CUDA_VISIBLE_DEVICES=0 ./run.sh
  • See RESULT.md and compare with your result.

CALLHOME experiment

Configuraition

  • Modify egs/callhome/v1/cmd.sh according to your job schedular. If you use your local machine, use "run.pl" (default). If you use Grid Engine, use "queue.pl" If you use SLURM, use "slurm.pl". For more information about cmd.sh see http://kaldi-asr.org/doc/queue.html.

Run data preparation, training, inference, and scoring

cd egs/callhome/v1
CUDA_VISIBLE_DEVICES=0 ./run.sh --db_path <db_path>
# <db_path> means absolute path of the directory where the necessary LDC corpora are stored.
  • See RESULT.md and compare with your result.
  • If you want to run multi-GPU training, simply set CUDA_VISIBLE_DEVICES appropriately. This environment variable may be automatically set by your job schedular such as SLURM.

About

This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 85.9%
  • Shell 12.8%
  • Makefile 1.3%