Skip to content

klausreus/Course-Python-for-Machine-Learning

 
 

Repository files navigation

Course: Python for Machine Learning

Run it now: Binder

Course materials on Python for machine learning:

  1. Introduction
    • Basics of machine learning
    • AI-ML-DL
    • Types of ML techniques
    • Python essential libraries for ML
  2. Linear and Nonlinear Reggression
    • Implementation using Scikit-learn
  3. Neural-Network
    • Implementation using Keras
  4. ML best practices to remember
    • Train_Test_split
    • Overfitting_Unerfitting
    • Bias-Variance-Tradeoff
  5. Experiment on real data (ML application for climate modelling)
  6. Closing remarks

You can reach me via: Linkedin Email

About

Course materials on Python for machine learning

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%