To use this framework, simply initialize a Manager
object. The Manager
class provides a generic training/testing loop for PyTorch models. It also provides some useful callbacks to use during training/testing.
- Python 3.9+
- PyTorch
- Packaging
- tqdm
- PyYAML (Optional for yaml configs)
- scipy (Optional for FID metric)
- tensorboard (Optional for tensorboard recording)
- PyPi:
pip install torchmanager
- Conda:
conda install torchmanager -c conda-forge
The Configs
class is designed to be inherited to define necessary configurations. It also provides a method to get configurations from terminal arguments.
from torchmanager.configs import Configs as _Configs
# define necessary configurations
class Configs(_Configs):
epochs: int
lr: float
...
def get_arguments(parser: Union[argparse.ArgumentParser, argparse._ArgumentGroup] = argparse.ArgumentParser()) -> Union[argparse.ArgumentParser, argparse._ArgumentGroup]:
'''Add arguments to argument parser'''
...
def show_settings(self) -> None:
...
# get configs from terminal arguments
configs = Configs.from_arguments()
The data.Dataset
class is designed to be inherited to define a dataset. It is a combination of torch.utils.data.Dataset
and torch.utils.data.DataLoader
with easier usage.
from torchmanager.data import Dataset
# define dataset
class CustomDataset(Dataset):
def __init__(self, ...):
...
@property
def unbatched_len(self) -> int:
...
def __getitem__(self, index: int) -> Tuple[torch.Tensor, torch.Tensor]:
...
# initialize datasets
training_dataset = CustomDataset(...)
val_dataset = CustomDataset(...)
testing_dataset = CustomDataset(...)
The Manager
class is the core of the framework. It provides a generic training/testing loop for PyTorch models. The Manager
class is designed to be inherited to manage the training/testing algorithm. There are also some useful callbacks to use during training/testing.
- Initialize the manager with target model, optimizer, loss function, and metrics:
import torch, torchmanager
# define model
class PytorchModel(torch.nn.Module):
...
# initialize model, optimizer, loss function, and metrics
model = PytorchModel(...)
optimizer = torch.optim.SGD(model.parameters(), lr=configs.lr)
loss_fn = torchmanager.losses.CrossEntropy()
metrics = {'accuracy': torchmanager.metrics.SparseCategoricalAccuracy()}
# initialize manager
manager = torchmanager.Manager(model, optimizer, loss_fn=loss_fn, metrics=metrics)
- Multiple losses can be used by passing a dictionary to
loss_fn
:
loss_fn = {
'loss1': torchmanager.losses.CrossEntropy(),
'loss2': torchmanager.losses.Dice(),
...
}
- Train the model with `fit`` method:
show_verbose: bool = ... # show progress bar information during training/testing
manager.fit(training_dataset, epochs=configs.epochs, val_dataset=val_dataset, show_verbose=show_verbose)
- There are also some other callbacks to use:
tensorboard_callback = torchmanager.callbacks.TensorBoard('logs') # tensorboard dependency required
last_ckpt_callback = torchmanager.callbacks.LastCheckpoint(manager, 'last.model')
model = manager.fit(..., callbacks_list=[tensorboard_callback, last_ckpt_callback])
- Test the model with test method:
manager.test(testing_dataset, show_verbose=show_verbose)
- Save the final trained PyTorch model:
torch.save(model, "model.pth") # The saved PyTorch model can be loaded individually without using torchmanager
Torchmanager automatically detects available devices to use during training/testing. GPU/MPS will be used in first priority if available. To specify other device to use, simply pass the device to the fit
method for training and test
method for testing:
- Multi-GPU training/testing:
# train on multiple GPUs
model = manager.fit(..., use_multi_gpus=True)
# test on multiple GPUs
manager.test(..., use_multi_gpus=True)
- Use only specified GPUs for training/testing:
# specify devices to use
gpus: Union[list[torch.device], torch.device] = ... # Notice: device id must be specified
# train on specified multiple GPUs
model = manager.fit(..., use_multi_gpus=True, devices=gpus)
# test on specified multiple GPUs
manager.test(..., use_multi_gpus=True, devices=gpus)
The Manager
class is designed to be inherited to manage the training/testing algorithm. To customize the training/testing algorithm, simply inherit the Manager
class and override the train_step
and test_step
methods.
class CustomManager(Manager):
...
def train_step(x_train: torch.Tensor, y_train: torch.Tensor) -> Dict[str, float]:
...
def test_step(x_test: torch.Tensor, y_test: torch.Tensor) -> Dict[str, float]:
...
The Experiment
class is designed to be used as a single callback to save experiment information. It is a combination of torchmanager.callbacks.TensorBoard
, torchmanager.callbacks.LastCheckpoint
, and torchmanager.callbacks.BestCheckpoint
with easier usage.
...
exp_callback = torchmanager.callbacks.Experiment('test.exp', manager) # tensorboard dependency required
model = manager.fit(..., callbacks_list=[exp_callback])
The information, including full training logs and checkpoints, will be saved in the following structure:
experiments
└── <experiment name>.exp
├── checkpoints
│ ├── best-<metric name>.model
│ └── last.model
└── data
│ └── <TensorBoard data file>
├── <experiment name>.cfg
└── <experiment name>.log
@software{he_2023_10381715,
author = {He, Qisheng and
Dong, Ming},
title = {{TorchManager: A generic deep learning
training/testing framework for PyTorch}},
month = dec,
year = 2023,
publisher = {Zenodo},
version = 1,
doi = {10.5281/zenodo.10381715},
url = {https://doi.org/10.5281/zenodo.10381715}
}
- MAG-MS/MAGNET - Modality-Agnostic Learning for Medical Image Segmentation Using Multi-modality Self-distillation
- tlt - Transferring Lottery Tickets in Computer Vision Models: a Dynamic Pruning Approach