Skip to content

Add ViTDetBackbone #1776

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
1 change: 1 addition & 0 deletions keras_nlp/api/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -207,6 +207,7 @@
from keras_nlp.src.models.task import Task
from keras_nlp.src.models.vgg.vgg_backbone import VGGBackbone
from keras_nlp.src.models.vgg.vgg_image_classifier import VGGImageClassifier
from keras_nlp.src.models.vit_det.vit_det_backbone import ViTDetBackbone
from keras_nlp.src.models.whisper.whisper_audio_feature_extractor import (
WhisperAudioFeatureExtractor,
)
Expand Down
204 changes: 204 additions & 0 deletions keras_nlp/src/models/vit_det/vit_det_backbone.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,204 @@
# Copyright 2024 The KerasCV Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import keras
from keras import ops

from keras_nlp.src.api_export import keras_nlp_export
from keras_nlp.src.models.backbone import Backbone
from keras_nlp.src.models.vit_det.vit_layers import AddPositionalEmbedding
from keras_nlp.src.models.vit_det.vit_layers import ViTDetPatchingAndEmbedding
from keras_nlp.src.models.vit_det.vit_layers import WindowedTransformerEncoder


@keras_nlp_export("keras_nlp.models.ViTDetBackbone")
class ViTDetBackbone(Backbone):
"""An implementation of ViT image encoder.

The ViTDetBackbone uses a windowed transformer encoder and relative
positional encodings. The code has been adapted from [Segment Anything
paper](https://arxiv.org/abs/2304.02643), [Segment Anything GitHub](
https://github.com/facebookresearch/segment-anything) and [Detectron2](
https://github.com/facebookresearch/detectron2).

Args:
hidden_size (int): The latent dimensionality to be projected
into in the output of each stacked windowed transformer encoder.
num_layers (int): The number of transformer encoder layers to
stack in the Vision Transformer.
intermediate_dim (int): The dimensionality of the hidden Dense
layer in the transformer MLP head.
num_heads (int): the number of heads to use in the
`MultiHeadAttentionWithRelativePE` layer of each transformer
encoder.
global_attention_layer_indices (list): Indexes for blocks using
global attention.
image_shape (tuple[int], optional): The size of the input image in
`(H, W, C)` format. Defaults to `(1024, 1024, 3)`.
include_rescaling (bool, optional): Whether to rescale the inputs. If
set to `True`, inputs will be passed through a
`Rescaling(1/255.0)` layer. Defaults to `False`.
patch_size (int, optional): the patch size to be supplied to the
Patching layer to turn input images into a flattened sequence of
patches. Defaults to `16`.
num_output_channels (int, optional): The number of channels (features)
in the output (image encodings). Defaults to `256`.
use_bias (bool, optional): Whether to use bias to project the keys,
queries, and values in the attention layer. Defaults to `True`.
use_abs_pos (bool, optional): Whether to add absolute positional
embeddings to the output patches. Defaults to `True`.
use_rel_pos (bool, optional): Whether to use relative positional
emcodings in the attention layer. Defaults to `True`.
window_size (int, optional): The size of the window for windowed
attention in the transformer encoder blocks. Defaults to `14`.
layer_norm_epsilon (int, optional): The epsilon to use in the layer
normalization blocks in transformer encoder. Defaults to `1e-6`.

Examples:
```python
input_data = np.ones((2, 224, 224, 3), dtype="float32")

# Pretrained ViTDetBackbone backbone.
model = keras_nlp.models.ViTDetBackbone.from_preset("vit_det")
model(input_data)

# Randomly initialized ViTDetBackbone backbone with a custom config.
model = keras_nlp.models.ViTDetBackbone(
image_shape = (16, 16, 3),
patch_size = 2,
hidden_size = 4,
num_layers = 2,
global_attention_layer_indices = [2, 5, 8, 11],
intermediate_dim = 4 * 4,
num_heads = 2,
num_output_channels = 2,
window_size = 2,
)
model(input_data)
```
"""

def __init__(
self,
hidden_size,
num_layers,
intermediate_dim,
num_heads,
global_attention_layer_indices,
include_rescaling=True,
image_shape=(1024, 1024, 3),
patch_size=16,
num_output_channels=256,
use_bias=True,
use_abs_pos=True,
use_rel_pos=True,
window_size=14,
layer_norm_epsilon=1e-6,
**kwargs
):
# === Functional model ===
img_input = keras.layers.Input(shape=image_shape)
# Check that the input image is well specified.
if img_input.shape[-3] is None or img_input.shape[-2] is None:
raise ValueError(
"Height and width of the image must be specified"
" in `image_shape`."
)
if img_input.shape[-3] != img_input.shape[-2]:
raise ValueError(
"Input image must be square i.e. the height must"
" be equal to the width in the `image_shape`"
" tuple/tensor."
)
img_size = img_input.shape[-3]
x = img_input
if include_rescaling:
# Use common rescaling strategy across keras_cv
x = keras.layers.Rescaling(1.0 / 255.0)(x)
# VITDet scales inputs based on the standard ImageNet mean/stddev.
x = (x - ops.array([0.485, 0.456, 0.406], dtype=x.dtype)) / (
ops.array([0.229, 0.224, 0.225], dtype=x.dtype)
)
x = ViTDetPatchingAndEmbedding(
kernel_size=(patch_size, patch_size),
strides=(patch_size, patch_size),
embed_dim=hidden_size,
)(x)
if use_abs_pos:
x = AddPositionalEmbedding(img_size, patch_size, hidden_size)(x)
for i in range(num_layers):
x = WindowedTransformerEncoder(
project_dim=hidden_size,
intermediate_dim=intermediate_dim,
num_heads=num_heads,
use_bias=use_bias,
use_rel_pos=use_rel_pos,
window_size=(
window_size
if i not in global_attention_layer_indices
else 0
),
input_size=(img_size // patch_size, img_size // patch_size),
)(x)
x = keras.layers.Conv2D(
filters=num_output_channels, kernel_size=1, use_bias=False
)(x)
x = keras.layers.LayerNormalization(epsilon=1e-6)(x)
x = keras.layers.Conv2D(
filters=num_output_channels,
kernel_size=3,
padding="same",
use_bias=False,
)(x)
x = keras.layers.LayerNormalization(epsilon=1e-6)(x)

super().__init__(inputs=img_input, outputs=x, **kwargs)

# === Config ===
self.patch_size = patch_size
self.image_shape = image_shape
self.hidden_size = hidden_size
self.num_layers = num_layers
self.intermediate_dim = intermediate_dim
self.num_heads = num_heads
self.num_output_channels = num_output_channels
self.use_bias = use_bias
self.use_rel_pos = use_rel_pos
self.use_abs_pos = use_abs_pos
self.window_size = window_size
self.global_attention_layer_indices = global_attention_layer_indices
self.layer_norm_epsilon = layer_norm_epsilon
self.include_rescaling = include_rescaling

def get_config(self):
config = super().get_config()
config.update(
{
"image_shape": self.image_shape,
"include_rescaling": self.include_rescaling,
"patch_size": self.patch_size,
"hidden_size": self.hidden_size,
"num_layers": self.num_layers,
"intermediate_dim": self.intermediate_dim,
"num_heads": self.num_heads,
"num_output_channels": self.num_output_channels,
"use_bias": self.use_bias,
"use_abs_pos": self.use_abs_pos,
"use_rel_pos": self.use_rel_pos,
"window_size": self.window_size,
"global_attention_layer_indices": self.global_attention_layer_indices,
"layer_norm_epsilon": self.layer_norm_epsilon,
}
)
return config
54 changes: 54 additions & 0 deletions keras_nlp/src/models/vit_det/vit_det_backbone_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
# Copyright 2024 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import pytest

from keras_nlp.src.models.vit_det.vit_det_backbone import ViTDetBackbone
from keras_nlp.src.tests.test_case import TestCase


class ViTDetBackboneTest(TestCase):
def setUp(self):
self.init_kwargs = {
"include_rescaling": True,
"image_shape": (16, 16, 3),
"patch_size": 2,
"hidden_size": 4,
"num_layers": 2,
"global_attention_layer_indices": [2, 5, 8, 11],
"intermediate_dim": 4 * 4,
"num_heads": 2,
"num_output_channels": 2,
"window_size": 2,
}
self.input_data = np.ones((1, 16, 16, 3), dtype="float32")

def test_backbone_basics(self):
self.run_backbone_test(
cls=ViTDetBackbone,
init_kwargs=self.init_kwargs,
input_data=self.input_data,
expected_output_shape=(1, 8, 8, 2),
run_mixed_precision_check=False,
run_quantization_check=False,
)

@pytest.mark.large
def test_saved_model(self):
self.run_model_saving_test(
cls=ViTDetBackbone,
init_kwargs=self.init_kwargs,
input_data=self.input_data,
)
Loading
Loading