Skip to content

Commit

Permalink
smart or constructor now applies most rules
Browse files Browse the repository at this point in the history
  • Loading branch information
awalterschulze committed Dec 23, 2024
1 parent 905e93a commit f3a2e57
Show file tree
Hide file tree
Showing 4 changed files with 201 additions and 94 deletions.
4 changes: 0 additions & 4 deletions CONTRIBUTING.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,10 +21,6 @@
- Do we like comments? Yes we do.
- Are they required? No.

### When to use a separate file

Now. When you are starting to ask this question, it is time to start using a separate file.

### Tactics

Tactics unlike proofs, definitions, etc. don't have any types.
Expand Down
173 changes: 124 additions & 49 deletions Katydid/Regex/SmartRegex.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,41 +8,52 @@ namespace SmartRegex

inductive Predicate (α: Type) where
| mk
(o: Ord α)
(desc: String)
(func: α -> Prop)
(dec: DecidablePred func)
(d: DecidablePred func)
: Predicate α

def Predicate.desc (p: Predicate α): String :=
def Predicate.desc {α: Type} (p: Predicate α): String :=
match p with
| ⟨ desc, _, _ ⟩ => desc
| ⟨ _, desc, _, _ ⟩ => desc

def Predicate.compare (x: Predicate α) (y: Predicate α): Ordering :=
let xd: String := x.desc
let yd: String := y.desc
Ord.compare xd yd

instance : Ord (Predicate α) where
compare: Predicate α → Predicate α → Ordering := Predicate.compare

def Predicate.mkAny [o: Ord α]: Predicate α := by
apply @Predicate.mk α o "any"
· sorry
· exact fun _ => True

def Predicate.mkChar (c: Char): Predicate Char := by
apply @Predicate.mk Char inferInstance (String.mk [c])
· sorry
· exact fun a: Char => a = c

def Predicate.func (p: Predicate α): α -> Prop :=
match p with
| ⟨ _, f, _ ⟩ => f
| ⟨ _, _, f, _ ⟩ => f

def Predicate.decfunc (p: Predicate α): DecidablePred p.func := by
cases p with
| mk desc f dec =>
| mk _ _ f dec =>
intro a
unfold DecidablePred at dec
unfold Predicate.func
simp
simp only
apply dec

def evalPredicate (p: Predicate α) (a: α): Bool := by
cases p.decfunc a with
| isFalse => exact Bool.false
| isTrue => exact Bool.true

def Predicate.compare (x: Predicate α) (y: Predicate α): Ordering :=
let xd: String := x.desc
let yd: String := y.desc
Ord.compare xd yd

instance : Ord (Predicate α) where
compare: Predicate α → Predicate α → Ordering := Predicate.compare

inductive Regex (α: Type): Type where
| emptyset : Regex α
| emptystr : Regex α
Expand All @@ -51,6 +62,83 @@ inductive Regex (α: Type): Type where
| concat : Regex α → Regex α → Regex α
| star : Regex α → Regex α

def Regex.compare (x y: Regex α): Ordering :=
match x with
| Regex.emptyset =>
match y with
| Regex.emptyset =>
Ordering.eq
| _ =>
Ordering.lt
| Regex.emptystr =>
match y with
| Regex.emptyset =>
Ordering.gt
| Regex.emptystr =>
Ordering.eq
| _ =>
Ordering.lt
| Regex.pred p1 =>
match y with
| Regex.emptyset =>
Ordering.gt
| Regex.emptystr =>
Ordering.gt
| Regex.pred p2 =>
Ord.compare p1 p2
| _ =>
Ordering.lt
| Regex.or x1 x2 =>
match y with
| Regex.emptyset =>
Ordering.gt
| Regex.emptystr =>
Ordering.gt
| Regex.pred _ =>
Ordering.gt
| Regex.or y1 y2 =>
match Regex.compare x1 y1 with
| Ordering.eq =>
Regex.compare x2 y2
| o => o
| _ =>
Ordering.lt
| Regex.concat x1 x2 =>
match y with
| Regex.emptyset =>
Ordering.gt
| Regex.emptystr =>
Ordering.gt
| Regex.pred _ =>
Ordering.gt
| Regex.or _ _ =>
Ordering.gt
| Regex.concat y1 y2 =>
match Regex.compare x1 y1 with
| Ordering.eq =>
Regex.compare x2 y2
| o => o
| _ =>
Ordering.lt
| Regex.star x1 =>
match y with
| Regex.star y1 =>
Regex.compare x1 y1
| _ =>
Ordering.lt

instance : Ord (Regex α) where
compare (x y: Regex α): Ordering := Regex.compare x y

instance : LE (Regex α) where
le x y := (Ord.compare x y).isLE

instance : BEq (Regex α) where
beq x y := Ord.compare x y == Ordering.eq

def Regex.le (x y: Regex α): Bool :=
x <= y

def null (r: Regex α): Bool :=
match r with
| Regex.emptyset => false
Expand Down Expand Up @@ -200,45 +288,32 @@ theorem orToList_is_orFromList (x: Regex α):
· case or x1 x2 ih1 ih2 =>
sorry


-- TODO: incorporate more simplification rules into the smart constructor
-- 1. Get the list of ors (Language.simp_or_assoc)
-- 2. Remove duplicates from the list (create a set) (Language.simp_or_comm and Language.simp_or_idemp and Language.simp_or_assoc)
-- 3. If at any following step the set is size one, simply return
-- 4. If the set contains star (any) then return star (any) (Language.simp_or_universal_r_is_universal and Language.simp_or_universal_l_is_universal)
-- 5. Delete emptyset from the set (Language.simp_or_emptyset_r_is_l and Language.simp_or_emptyset_l_is_r)
-- 6. If any of the set is nullable, remove emptystr from the set (Language.simp_or_emptystr_null_r_is_r and Language.simp_or_null_l_emptystr_is_l)
-- 7. create a sorted list from the set (Language.simp_or_assoc and Language.simp_or_comm)
-- 1. If x or y is emptyset then return the other (Language.simp_or_emptyset_r_is_l and Language.simp_or_emptyset_l_is_r)
-- 2. If x or y is star (any) then return star (any) (Language.simp_or_universal_r_is_universal and Language.simp_or_universal_l_is_universal)
-- 3. Get the lists of ors using orToList (Language.simp_or_assoc)
-- 4. Merge sort the sorrted lists (Language.simp_or_comm and Language.simp_or_assoc)
-- 5. Remove duplicates from the list (or create a set) (Language.simp_or_idemp)
-- 6. If at any following step the set is size one, simply return
-- TODO: 7. If any of the set is nullable, remove emptystr from the set (Language.simp_or_emptystr_null_r_is_r and Language.simp_or_null_l_emptystr_is_l)
-- 8. Reconstruct Regex.or from the list using orFromList (Language.simp_or_assoc)
def smartOr (x y: Regex α): Regex α :=
match x with
| Regex.emptyset => y
| Regex.star (Regex.pred (Predicate.mk _ "any" _ _)) => x
| _ =>
match y with
| Regex.emptyset => x
| _ => Regex.or x y

private theorem smartOr_is_or_righthand (x y: Regex α) (hx_emptyset: x ≠ Regex.emptyset):
denote (Regex.or x y) = denote (smartOr x y) := by
cases y <;> (try simp [smartOr])
· case emptyset =>
simp [denote]
exact (Language.simp_or_emptyset_r_is_l (denote x))
match y with
| Regex.emptyset => x
| Regex.star (Regex.pred (Predicate.mk _ "any" _ _)) => y
| _ =>
-- it is implied that xs is sorted, given it was created using smartOr
let xs := orToList x
let ys := orToList y
-- merge the sorted lists, resulting in a sorted list
let ors := NonEmptyList.merge xs ys
-- remove duplicates from sorted list using erase repititions
let uniqueOrs := NonEmptyList.eraseReps ors
orFromList uniqueOrs

theorem smartOr_is_or (x y: Regex α):
denote (Regex.or x y) = denote (smartOr x y) := by
have hy := smartOr_is_or_righthand x y
match x with
| Regex.emptyset =>
unfold smartOr
simp [denote]
exact (Language.simp_or_emptyset_l_is_r (denote y))
| Regex.emptystr =>
exact hy (by simp)
| Regex.pred p =>
exact hy (by simp)
| Regex.or x1 x2 =>
exact hy (by simp)
| Regex.concat x1 x2 =>
exact hy (by simp)
| Regex.star x1 =>
exact hy (by simp)
sorry
70 changes: 29 additions & 41 deletions Katydid/Std/Lists.lean
Original file line number Diff line number Diff line change
Expand Up @@ -11,11 +11,36 @@ import Mathlib.Tactic.Linarith
import Mathlib.Tactic.SplitIfs

import Katydid.Std.BEq
import Katydid.Std.Ordering
import Katydid.Std.Nat

open Nat
open List

def Lists.compare [o: Ord α] (xs ys: List α): Ordering :=
Ordering.lex
(Ord.compare (length xs) (length ys))
(match xs with
| [] =>
match ys with
| [] => Ordering.eq
| _ => Ordering.lt -- impossible
| (x'::xs') =>
match ys with
| [] => Ordering.gt -- impossible
| (y'::ys') =>
Ordering.lex (Ord.compare x' y') (Lists.compare xs' ys')
)

instance [Ord α]: Ord (List α) where
compare := Lists.compare

instance [Ord α]: LE (List α) where
le xs ys := (Lists.compare xs ys).isLE

def Lists.merge [Ord α] (xs: List α) (ys: List α): List α :=
List.merge xs ys (fun x y => (Ord.compare x y).isLE)

theorem list_cons_ne_nil (x : α) (xs : List α):
x :: xs ≠ [] := by
intro h'
Expand Down Expand Up @@ -962,51 +987,14 @@ theorem list_notin_cons (y: α) (x: α) (xs: List α):
apply Mem.tail
exact yinxs

theorem list_eraseReps_finishes {α: Type} [BEq α] (x: α) (xs: List α):
theorem list_eraseReps_idemp {α: Type} [BEq α] (x: α) (xs: List α):
List.eraseReps (List.eraseReps xs) = List.eraseReps xs := by
sorry

theorem list_eraseReps_xx {α: Type} [BEq α] (x: α) (xs: List α):
theorem list_eraseReps_erases_first_rep {α: Type} [BEq α] (x: α) (xs: List α):
List.eraseReps (x::(x::xs)) = List.eraseReps (x::xs) := by
sorry

-- theorem list_eraseReps_does_not_erase_head (α: Type) [BEq α] (x: α) (xs: List α) (h: x ∉ xs):
-- ∃ exs, List.eraseReps (x::xs) = x::exs := by
-- induction xs with
-- | nil =>
-- exists []
-- | cons ix ixs ih =>
-- have h' := list_notin_cons x ix ixs h
-- clear h
-- cases h' with
-- | intro xix xixs =>
-- have ih' := ih xixs
-- clear ih
-- cases ih' with
-- | intro exs ih' =>
-- simp [List.eraseReps]
-- exists List.eraseReps (ix :: ixs)
-- simp [eraseReps.loop]

theorem list_eraseReps_has_same_head (α: Type) [BEq α] [LawfulBEq α] (x: α) (xs: List α):
theorem list_eraseReps_does_not_erase_head (α: Type) [BEq α] [LawfulBEq α] (x: α) (xs: List α):
∃ (xs': List α), (x::xs') = List.eraseReps (x::xs) := by
induction xs with
| nil =>
exists []
| cons ix ixs ih =>
cases ih with
| intro xs ih =>
have xix := beq_eq_or_neq_prop x ix
cases xix
· case inl xix =>
rw [xix]
rw [list_eraseReps_xx]
rw [<- xix]
exists xs
· case inr xix =>
exists (List.eraseReps (ix::ixs))
simp only [List.eraseReps]
simp only [List.eraseReps.loop]
split
· sorry
· sorry
sorry
48 changes: 48 additions & 0 deletions Katydid/Std/NonEmptyList.lean
Original file line number Diff line number Diff line change
@@ -1,8 +1,56 @@
import Katydid.Std.Ordering
import Katydid.Std.Lists

structure NonEmptyList (α: Type) where
head : α
tail : List α

namespace NonEmptyList

def compare [o: Ord α] (xs ys: NonEmptyList α): Ordering :=
match xs with
| NonEmptyList.mk x' xs' =>
match ys with
| NonEmptyList.mk y' ys' =>
Ordering.lex (Ord.compare x' y') (Ord.compare xs' ys')

instance [Ord α] : Ord (NonEmptyList α) where
compare := compare

def cons (x: α) (xs: NonEmptyList α): NonEmptyList α :=
NonEmptyList.mk x (xs.head :: xs.tail)

def toList (xs: NonEmptyList α): List α :=
match xs with
| NonEmptyList.mk head tail =>
head :: tail

instance [Ord α] : LE (NonEmptyList α) where
le (x: NonEmptyList α) (y: NonEmptyList α) :=
LE.le x.toList y.toList

def merge' [Ord α] (xs: NonEmptyList α) (ys: NonEmptyList α): List α :=
List.merge (xs.toList) (ys.toList) (fun x y => (Ord.compare x y).isLE)

def merge [Ord α] (xs: NonEmptyList α) (ys: NonEmptyList α): NonEmptyList α :=
match xs with
| NonEmptyList.mk x' xs' =>
match ys with
| NonEmptyList.mk y' ys' =>
match Ord.compare x' y' with
| Ordering.eq =>
NonEmptyList.mk x' (Lists.merge xs' ys')
| Ordering.lt =>
NonEmptyList.mk x' (Lists.merge xs' (y'::ys'))
| Ordering.gt =>
NonEmptyList.mk y' (Lists.merge (x'::xs') ys')

def eraseReps [BEq α] (xs: NonEmptyList α): NonEmptyList α :=
match xs with
| NonEmptyList.mk x' xs' =>
match xs' with
| [] => xs
| (x''::xs'') =>
if x' == x''
then eraseReps (NonEmptyList.mk x'' xs'')
else NonEmptyList.mk x' (List.eraseReps xs')

0 comments on commit f3a2e57

Please sign in to comment.