Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add no7singing training #349

Merged
merged 2 commits into from
Mar 28, 2022
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 91 additions & 0 deletions egs/no7singing/voc1/cmd.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
# ====== About run.pl, queue.pl, slurm.pl, and ssh.pl ======
# Usage: <cmd>.pl [options] JOB=1:<nj> <log> <command...>
# e.g.
# run.pl --mem 4G JOB=1:10 echo.JOB.log echo JOB
#
# Options:
# --time <time>: Limit the maximum time to execute.
# --mem <mem>: Limit the maximum memory usage.
# -–max-jobs-run <njob>: Limit the number parallel jobs. This is ignored for non-array jobs.
# --num-threads <ngpu>: Specify the number of CPU core.
# --gpu <ngpu>: Specify the number of GPU devices.
# --config: Change the configuration file from default.
#
# "JOB=1:10" is used for "array jobs" and it can control the number of parallel jobs.
# The left string of "=", i.e. "JOB", is replaced by <N>(Nth job) in the command and the log file name,
# e.g. "echo JOB" is changed to "echo 3" for the 3rd job and "echo 8" for 8th job respectively.
# Note that the number must start with a positive number, so you can't use "JOB=0:10" for example.
#
# run.pl, queue.pl, slurm.pl, and ssh.pl have unified interface, not depending on its backend.
# These options are mapping to specific options for each backend and
# it is configured by "conf/queue.conf" and "conf/slurm.conf" by default.
# If jobs failed, your configuration might be wrong for your environment.
#
#
# The official documentaion for run.pl, queue.pl, slurm.pl, and ssh.pl:
# "Parallelization in Kaldi": http://kaldi-asr.org/doc/queue.html
# =========================================================~


# Select the backend used by run.sh from "local", "stdout", "sge", "slurm", or "ssh"
cmd_backend="local"

# Local machine, without any Job scheduling system
if [ "${cmd_backend}" = local ]; then

# The other usage
export train_cmd="utils/run.pl"
# Used for "*_train.py": "--gpu" is appended optionally by run.sh
export cuda_cmd="utils/run.pl"
# Used for "*_recog.py"
export decode_cmd="utils/run.pl"

# Local machine, without any Job scheduling system
elif [ "${cmd_backend}" = stdout ]; then

# The other usage
export train_cmd="utils/stdout.pl"
# Used for "*_train.py": "--gpu" is appended optionally by run.sh
export cuda_cmd="utils/stdout.pl"
# Used for "*_recog.py"
export decode_cmd="utils/stdout.pl"

# "qsub" (SGE, Torque, PBS, etc.)
elif [ "${cmd_backend}" = sge ]; then
# The default setting is written in conf/queue.conf.
# You must change "-q g.q" for the "queue" for your environment.
# To know the "queue" names, type "qhost -q"
# Note that to use "--gpu *", you have to setup "complex_value" for the system scheduler.

export train_cmd="utils/queue.pl"
export cuda_cmd="utils/queue.pl"
export decode_cmd="utils/queue.pl"

# "sbatch" (Slurm)
elif [ "${cmd_backend}" = slurm ]; then
# The default setting is written in conf/slurm.conf.
# You must change "-p cpu" and "-p gpu" for the "partion" for your environment.
# To know the "partion" names, type "sinfo".
# You can use "--gpu * " by defualt for slurm and it is interpreted as "--gres gpu:*"
# The devices are allocated exclusively using "${CUDA_VISIBLE_DEVICES}".

export train_cmd="utils/slurm.pl"
export cuda_cmd="utils/slurm.pl"
export decode_cmd="utils/slurm.pl"

elif [ "${cmd_backend}" = ssh ]; then
# You have to create ".queue/machines" to specify the host to execute jobs.
# e.g. .queue/machines
# host1
# host2
# host3
# Assuming you can login them without any password, i.e. You have to set ssh keys.

export train_cmd="utils/ssh.pl"
export cuda_cmd="utils/ssh.pl"
export decode_cmd="utils/ssh.pl"

else
echo "$0: Error: Unknown cmd_backend=${cmd_backend}" 1>&2
return 1
fi
180 changes: 180 additions & 0 deletions egs/no7singing/voc1/conf/hifigan.v1.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,180 @@
# This is the configuration file for LibriTTS dataset.
# This configuration is based on HiFiGAN V1, which is
# an official configuration. But I found that the optimizer
# setting does not work well with my implementation.
# So I changed optimizer settings as follows:
# - AdamW -> Adam
# - betas: [0.8, 0.99] -> betas: [0.5, 0.9]
# - Scheduler: ExponentialLR -> MultiStepLR
# To match the shift size difference, the upsample scales
# is also modified from the original 256 shift setting.

###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
sampling_rate: 24000 # Sampling rate.
fft_size: 2048 # FFT size.
hop_size: 300 # Hop size.
win_length: 1200 # Window length.
# If set to null, it will be the same as fft_size.
window: "hann" # Window function.
num_mels: 80 # Number of mel basis.
fmin: 80 # Minimum freq in mel basis calculation.
fmax: 7600 # Maximum frequency in mel basis calculation.
global_gain_scale: 1.0 # Will be multiplied to all of waveform.
trim_silence: false # Whether to trim the start and end of silence.
trim_threshold_in_db: 20 # Need to tune carefully if the recording is not good.
trim_frame_size: 1024 # Frame size in trimming.
trim_hop_size: 256 # Hop size in trimming.
format: "hdf5" # Feature file format. "npy" or "hdf5" is supported.

###########################################################
# GENERATOR NETWORK ARCHITECTURE SETTING #
###########################################################
generator_type: HiFiGANGenerator
generator_params:
in_channels: 80 # Number of input channels.
out_channels: 1 # Number of output channels.
channels: 512 # Number of initial channels.
kernel_size: 7 # Kernel size of initial and final conv layers.
upsample_scales: [5, 5, 4, 3] # Upsampling scales.
upsample_kernel_sizes: [10, 10, 8, 6] # Kernel size for upsampling layers.
resblock_kernel_sizes: [3, 7, 11] # Kernel size for residual blocks.
resblock_dilations: # Dilations for residual blocks.
- [1, 3, 5]
- [1, 3, 5]
- [1, 3, 5]
use_additional_convs: true # Whether to use additional conv layer in residual blocks.
bias: true # Whether to use bias parameter in conv.
nonlinear_activation: "LeakyReLU" # Nonlinear activation type.
nonlinear_activation_params: # Nonlinear activation paramters.
negative_slope: 0.1
use_weight_norm: true # Whether to apply weight normalization.

###########################################################
# DISCRIMINATOR NETWORK ARCHITECTURE SETTING #
###########################################################
discriminator_type: HiFiGANMultiScaleMultiPeriodDiscriminator
discriminator_params:
scales: 3 # Number of multi-scale discriminator.
scale_downsample_pooling: "AvgPool1d" # Pooling operation for scale discriminator.
scale_downsample_pooling_params:
kernel_size: 4 # Pooling kernel size.
stride: 2 # Pooling stride.
padding: 2 # Padding size.
scale_discriminator_params:
in_channels: 1 # Number of input channels.
out_channels: 1 # Number of output channels.
kernel_sizes: [15, 41, 5, 3] # List of kernel sizes.
channels: 128 # Initial number of channels.
max_downsample_channels: 1024 # Maximum number of channels in downsampling conv layers.
max_groups: 16 # Maximum number of groups in downsampling conv layers.
bias: true
downsample_scales: [4, 4, 4, 4, 1] # Downsampling scales.
nonlinear_activation: "LeakyReLU" # Nonlinear activation.
nonlinear_activation_params:
negative_slope: 0.1
follow_official_norm: true # Whether to follow the official norm setting.
periods: [2, 3, 5, 7, 11] # List of period for multi-period discriminator.
period_discriminator_params:
in_channels: 1 # Number of input channels.
out_channels: 1 # Number of output channels.
kernel_sizes: [5, 3] # List of kernel sizes.
channels: 32 # Initial number of channels.
downsample_scales: [3, 3, 3, 3, 1] # Downsampling scales.
max_downsample_channels: 1024 # Maximum number of channels in downsampling conv layers.
bias: true # Whether to use bias parameter in conv layer."
nonlinear_activation: "LeakyReLU" # Nonlinear activation.
nonlinear_activation_params: # Nonlinear activation paramters.
negative_slope: 0.1
use_weight_norm: true # Whether to apply weight normalization.
use_spectral_norm: false # Whether to apply spectral normalization.

###########################################################
# STFT LOSS SETTING #
###########################################################
use_stft_loss: false # Whether to use multi-resolution STFT loss.
use_mel_loss: true # Whether to use Mel-spectrogram loss.
mel_loss_params:
fs: 24000
fft_size: 2048
hop_size: 300
win_length: 1200
window: "hann"
num_mels: 80
fmin: 0
fmax: 12000
log_base: null
generator_adv_loss_params:
average_by_discriminators: false # Whether to average loss by #discriminators.
discriminator_adv_loss_params:
average_by_discriminators: false # Whether to average loss by #discriminators.
use_feat_match_loss: true
feat_match_loss_params:
average_by_discriminators: false # Whether to average loss by #discriminators.
average_by_layers: false # Whether to average loss by #layers in each discriminator.
include_final_outputs: false # Whether to include final outputs in feat match loss calculation.

###########################################################
# ADVERSARIAL LOSS SETTING #
###########################################################
lambda_aux: 45.0 # Loss balancing coefficient for STFT loss.
lambda_adv: 1.0 # Loss balancing coefficient for adversarial loss.
lambda_feat_match: 2.0 # Loss balancing coefficient for feat match loss..

###########################################################
# DATA LOADER SETTING #
###########################################################
batch_size: 16 # Batch size.
batch_max_steps: 8400 # Length of each audio in batch. Make sure dividable by hop_size.
pin_memory: true # Whether to pin memory in Pytorch DataLoader.
num_workers: 2 # Number of workers in Pytorch DataLoader.
remove_short_samples: false # Whether to remove samples the length of which are less than batch_max_steps.
allow_cache: false # Whether to allow cache in dataset. If true, it requires cpu memory.

###########################################################
# OPTIMIZER & SCHEDULER SETTING #
###########################################################
generator_optimizer_type: Adam
generator_optimizer_params:
lr: 2.0e-4
betas: [0.5, 0.9]
weight_decay: 0.0
generator_scheduler_type: MultiStepLR
generator_scheduler_params:
gamma: 0.5
milestones:
- 200000
- 400000
- 600000
- 800000
generator_grad_norm: -1
discriminator_optimizer_type: Adam
discriminator_optimizer_params:
lr: 2.0e-4
betas: [0.5, 0.9]
weight_decay: 0.0
discriminator_scheduler_type: MultiStepLR
discriminator_scheduler_params:
gamma: 0.5
milestones:
- 200000
- 400000
- 600000
- 800000
discriminator_grad_norm: -1

###########################################################
# INTERVAL SETTING #
###########################################################
generator_train_start_steps: 1 # Number of steps to start to train discriminator.
discriminator_train_start_steps: 0 # Number of steps to start to train discriminator.
train_max_steps: 2500000 # Number of training steps.
save_interval_steps: 10000 # Interval steps to save checkpoint.
eval_interval_steps: 1000 # Interval steps to evaluate the network.
log_interval_steps: 100 # Interval steps to record the training log.

###########################################################
# OTHER SETTING #
###########################################################
num_save_intermediate_results: 4 # Number of results to be saved as intermediate results.
12 changes: 12 additions & 0 deletions egs/no7singing/voc1/conf/slurm.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
# Default configuration
command sbatch --export=PATH --ntasks-per-node=1
option time=* --time $0
option mem=* --mem-per-cpu $0
option mem=0 # Do not add anything to qsub_opts
option num_threads=* --cpus-per-task $0 --ntasks-per-node=1
option num_threads=1 --cpus-per-task 1 --ntasks-per-node=1 # Do not add anything to qsub_opts
default gpu=0
option gpu=0 -p cpu
option gpu=* -p gpu --gres=gpu:$0
# note: the --max-jobs-run option is supported as a special case
# by slurm.pl and you don't have to handle it in the config file.
97 changes: 97 additions & 0 deletions egs/no7singing/voc1/local/dataset_split.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
#!/usr/bin/env python3
import os
import argparse
import sys
import random
import shutil
from shutil import copyfile


UTT_PREFIX = "no7singing"
DEV_LIST = ["13", "14", "26", "28", "39"]
TEST_LIST = ["01", "16", "17", "27", "44"]


def train_check(song):
return (song not in DEV_LIST) and (song not in TEST_LIST)


def dev_check(song):
return song in DEV_LIST


def test_check(song):
return song in TEST_LIST


def pack_zero(string, size=4):
if len(string) < size:
string = "0" * (size - len(string)) + string
return string


def makedir(data_url):
if os.path.exists(data_url):
shutil.rmtree(data_url)

os.makedirs(data_url)


def process_text_info(text):
info = open(text, "r", encoding="utf-8")
label_info = []
text_info = []
for line in info.readlines():
line = line.strip().split()
label_info.append(
"{} {} {}".format(
float(line[0])/1e7, float(line[1])/1e7, line[2].strip() # no7singing timings to seconds
)
)
text_info.append(line[2].strip())
return " ".join(label_info), " ".join(text_info)


def process_subset(src_data, subset, check_func, fs):
subfolder = os.listdir(src_data)
makedir(subset)
wavscp = open(os.path.join(subset, "wav.scp"), "w", encoding="utf-8")
utt2spk = open(os.path.join(subset, "utt2spk"), "w", encoding="utf-8")
label_scp = open(os.path.join(subset, "label"), "w", encoding="utf-8")
fixed_data = os.path.join(subset, "fix_byte")
makedir(fixed_data)

for song_index in range(1, 52):
song_index = pack_zero(str(song_index), size=2)
if not check_func(song_index):
continue
utt_id = "{}_{}".format(UTT_PREFIX, pack_zero(song_index))

cmd = f"sox {os.path.join(src_data, 'wav', song_index)}.wav -c 1 -t wavpcm -b 16 -r {fs} {os.path.join(fixed_data, song_index)}_bits16.wav"
print(f"cmd: {cmd}")
os.system(cmd)

wavscp.write(
"{} {}\n".format(
utt_id, os.path.join(fixed_data, "{}_bits16.wav".format(song_index))
)
)
utt2spk.write("{} {}\n".format(utt_id, UTT_PREFIX))
label_info, text_info = process_text_info(
os.path.join(src_data, "mono_label", "{}.lab".format(song_index))
)
label_scp.write("{} {}\n".format(utt_id, label_info))


if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Prepare Data for Natsume Database")
parser.add_argument("src_data", type=str, help="source data directory")
parser.add_argument("train", type=str, help="train set")
parser.add_argument("dev", type=str, help="development set")
parser.add_argument("test", type=str, help="test set")
parser.add_argument("--fs", type=int, help="frame rate (Hz)")
args = parser.parse_args()

process_subset(args.src_data, args.train, train_check, args.fs)
process_subset(args.src_data, args.dev, dev_check, args.fs)
process_subset(args.src_data, args.test, test_check, args.fs)
Loading