Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP] Pruned_transducer_stateless for WenetSpeech #274

1 change: 1 addition & 0 deletions .flake8
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ per-file-ignores =
egs/librispeech/ASR/*/conformer.py: E501,
egs/aishell/ASR/*/conformer.py: E501,
egs/tedlium3/ASR/*/conformer.py: E501,
egs/wenetspeech/ASR/*/conformer.py: E501,
egs/gigaspeech/ASR/*/conformer.py: E501,
egs/librispeech/ASR/pruned_transducer_stateless2/*.py: E501,

Expand Down
1 change: 1 addition & 0 deletions egs/wenetspeech/ASR/local/compute_fbank_musan.py
93 changes: 93 additions & 0 deletions egs/wenetspeech/ASR/local/compute_fbank_wenetspeech_dev_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
#!/usr/bin/env python3
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from pathlib import Path

import torch
from lhotse import (
CutSet,
KaldifeatFbank,
KaldifeatFbankConfig,
LilcomHdf5Writer,
)

# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)


def compute_fbank_wenetspeech_dev_test():
in_out_dir = Path("data/fbank")
# number of workers in dataloader
num_workers = 20

# number of seconds in a batch
batch_duration = 600

subsets = ("DEV", "TEST_NET", "TEST_MEETING")

device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 1)
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))

logging.info(f"device: {device}")

for partition in subsets:
cuts_path = in_out_dir / f"cuts_{partition}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{cuts_path} exists - skipping")
continue

raw_cuts_path = in_out_dir / f"cuts_{partition}_raw.jsonl.gz"

logging.info(f"Loading {raw_cuts_path}")
cut_set = CutSet.from_file(raw_cuts_path)

logging.info("Computing features")

cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{in_out_dir}/feats_{partition}",
num_workers=num_workers,
batch_duration=batch_duration,
storage_type=LilcomHdf5Writer,
)
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)

logging.info(f"Saving to {cuts_path}")
cut_set.to_file(cuts_path)


def main():
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)

compute_fbank_wenetspeech_dev_test()


if __name__ == "__main__":
main()
171 changes: 171 additions & 0 deletions egs/wenetspeech/ASR/local/compute_fbank_wenetspeech_splits.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
#!/usr/bin/env python3
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import logging
from datetime import datetime
from pathlib import Path

import torch
from lhotse import (
ChunkedLilcomHdf5Writer,
CutSet,
KaldifeatFbank,
KaldifeatFbankConfig,
set_audio_duration_mismatch_tolerance,
set_caching_enabled,
)

# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)


def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)

parser.add_argument(
"--num-workers",
type=int,
default=20,
help="Number of dataloading workers used for reading the audio.",
)
parser.add_argument(
"--batch-duration",
type=float,
default=600.0,
help="The maximum number of audio seconds in a batch."
"Determines batch size dynamically.",
)

parser.add_argument(
"--num-splits",
type=int,
required=True,
help="The number of splits of the L subset",
)

parser.add_argument(
"--start",
type=int,
default=0,
help="Process pieces starting from this number (inclusive).",
)

parser.add_argument(
"--stop",
type=int,
default=-1,
help="Stop processing pieces until this number (exclusive).",
)
return parser


def compute_fbank_wenetspeech_splits(args):
num_splits = args.num_splits
output_dir = f"data/fbank/L_split_{num_splits}"
output_dir = Path(output_dir)
assert output_dir.exists(), f"{output_dir} does not exist!"

num_digits = len(str(num_splits))

start = args.start
stop = args.stop
if stop < start:
stop = num_splits

stop = min(stop, num_splits)

device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
logging.info(f"device: {device}")

set_audio_duration_mismatch_tolerance(0.01) # 10ms tolerance
set_caching_enabled(False)
for i in range(start, stop):
idx = f"{i + 1}".zfill(num_digits)
logging.info(f"Processing {idx}/{num_splits}")

cuts_path = output_dir / f"cuts_L.{idx}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{cuts_path} exists - skipping")
continue

raw_cuts_path = output_dir / f"cuts_L_raw.{idx}.jsonl.gz"

logging.info(f"Loading {raw_cuts_path}")
cut_set = CutSet.from_file(raw_cuts_path)

logging.info("Computing features")

cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{output_dir}/feats_L_{idx}",
num_workers=args.num_workers,
batch_duration=args.batch_duration,
storage_type=ChunkedLilcomHdf5Writer,
)

logging.info("About to split cuts into smaller chunks.")
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)

logging.info(f"Saving to {cuts_path}")
cut_set.to_file(cuts_path)
logging.info(f"Saved to {cuts_path}")


def main():
now = datetime.now()
date_time = now.strftime("%Y-%m-%d-%H-%M-%S")

log_filename = "log-compute_fbank_wenetspeech_splits"
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
log_filename = f"{log_filename}-{date_time}"

logging.basicConfig(
filename=log_filename,
format=formatter,
level=logging.INFO,
filemode="w",
)

console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(logging.Formatter(formatter))
logging.getLogger("").addHandler(console)

parser = get_parser()
args = parser.parse_args()
logging.info(vars(args))

compute_fbank_wenetspeech_splits(args)


if __name__ == "__main__":
main()
Loading