Skip to content

Commit

Permalink
[Minor][MemHammer] Minor tweaks in code review (#14)
Browse files Browse the repository at this point in the history
* ...

* Apply clang-format

* Apply black

* remove CODEOWNERS
  • Loading branch information
junrushao authored Jan 16, 2022
1 parent 2feb3fb commit e62d1f2
Show file tree
Hide file tree
Showing 14 changed files with 55 additions and 211 deletions.
158 changes: 0 additions & 158 deletions .github/CODEOWNERS
Original file line number Diff line number Diff line change
@@ -1,158 +0,0 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

# Github code owners file
# This file is used as a convenient tool to map
# committers' areas of expertise and faciliate the review process.
#
# This may not be the non-comprehensive list and is meant to be
# updated over time.

# Per ASF policy, committer have global write permission.
# We normally recommend committers to shepherd code in their area of expertise.
* @apache/tvm-committers

# Order is important; the last matching pattern takes the most precedence.
# The sub modules should be ordered first by depth.
# Making sure we append new sub-module rules after exisiting modules rules.

##############################
# Top-level Fallbacks
##############################
include/** @tqchen @jroesch @yzhliu @icemelon @junrushao1994 @comaniac @zhiics
src/** @tqchen @jroesch @yzhliu @icemelon @junrushao1994 @comaniac @zhiics
apps/** @tqchen @jroesch @yzhliu @icemelon @junrushao1994 @comaniac @zhiics
python/** @tqchen @jroesch @yzhliu @icemelon @junrushao1994 @comaniac @zhiics

# Thirdparty license audit
3rdparty/** @tqchen @jroesch
licenses/** @tqchen @jroesch

# JVM language
jvm/** @yzhliu

# Golang
golang/** @srkreddy1238

# WASM
web/** @tqchen @jroesch

# Docker
docker/** @areusch @leandron @jroesch

# Conda
conda/** @tqchen @junrushao1994 @comaniac

# CMake
cmake/** @jroesch @tqchen @areusch @junrushao1994 @comaniac

# rust bindings
rust/** @jroesch @nhynes @nhynes

# vta
vta/** @tmoreau89 @vegaluisjose

# docs
docs/** @comaniac @junrushao1994 @tqchen @jroesch @areusch @yzhliu @merrymercy @icemelon
tutorials/** @comaniac @junrushao1994 @tqchen @jroesch @areusch @yzhliu @merrymercy @icemelon

# tests
tests/** @comaniac @junrushao1994 @tqchen @jroesch @areusch @yzhliu @merrymercy @icemelon

##############################
# Specific modules
##############################

# automation related
src/auto_scheduler/** @merrymercy @jcf94 @comaniac @junrushao1994 @vinx13 @Hzfengsy
include/tvm/auto_scheduler/** @merrymercy @jcf94 @comaniac @junrushao1994 @vinx13 @Hzfengsy
python/tvm/auto_scheduler/** @merrymercy @jcf94 @comaniac @junrushao1994 @vinx13 @Hzfengsy

python/tvm/autotvm/** @merrymercy @jcf94 @comaniac @junrushao1994 @vinx13

# node system and reflection
src/node/** @junrushao1994 @vinx13 @tqchen @jroesch @comaniac
include/tvm/node/** @junrushao1994 @vinx13 @tqchen @jroesch @comaniac

# ir: Common IR
src/ir/** @junrushao1994 @vinx13 @tqchen @jroesch @comaniac
include/tvm/ir/** @junrushao1994 @vinx13 @tqchen @jroesch @comaniac
python/tvm/ir/** @junrushao1994 @vinx13 @tqchen @jroesch @comaniac

# tir
src/tir/** @junrushao1994 @vinx13 @tqchen @kparzysz-quic @ZihengJiang @masahi @were @Hzfengsy
include/tvm/tir/** @junrushao1994 @vinx13 @tqchen @kparzysz-quic @ZihengJiang @masahi @were @Hzfengsy
python/tvm/tir/** @junrushao1994 @vinx13 @tqchen @kparzysz-quic @ZihengJiang @masahi @were @Hzfengsy

# te
src/te/** @junrushao1994 @vinx13 @tqchen @kparzysz-quic @ZihengJiang @masahi @were
include/tvm/te/** @junrushao1994 @vinx13 @tqchen @kparzysz-quic @ZihengJiang @masahi @were
python/tvm/te/** @junrushao1994 @vinx13 @tqchen @kparzysz-quic @ZihengJiang @masahi @were

# target
src/target/** @junrushao1994 @vinx13 @tqchen @kparzysz-quic @ZihengJiang @masahi
include/tvm/target/** @junrushao1994 @vinx13 @tqchen @kparzysz-quic @ZihengJiang @masahi
python/tvm/target/** @junrushao1994 @vinx13 @tqchen @kparzysz-quic @ZihengJiang @masahi

# arith: Arithmetic module and simplifiers
src/arith/** @tqchen @junrushao1994 @vinx13
include/tvm/arith/** @tqchen @junrushao1994 @vinx13
python/tvm/arith/** @tqchen @junrushao1994 @vinx13

# parser
src/parser/** @jroesch @slyubomirsky

# runtime
src/runtime/** @vinx13 @tqchen @FronzenGene @liangfu @areusch @tmoreau89 @ajtulloch @masahi @kazum @ZihengJiang @junrushao1994
include/tvm/runtime/** @vinx13 @tqchen @FronzenGene @liangfu @areusch @tmoreau89 @ajtulloch @masahi @kazum @ZihengJiang @junrushao1994
python/tvm/runtime/** @vinx13 @tqchen @FronzenGene @liangfu @areusch @tmoreau89 @ajtulloch @masahi @kazum @ZihengJiang @junrushao1994

# runtime/micro
src/runtime/micro/** @areusch @liangfu @tmoreau89 @manupa-arm
src/runtime/crt/** @areusch @liangfu @tmoreau89 @manupa-arm
include/tvm/runtime/crt/** @areusch @liangfu @tmoreau89 @manupa-arm
include/tvm/runtime/micro/** @areusch @liangfu @tmoreau89 @manupa-arm
python/tvm/micro/** @areusch @liangfu @tmoreau89 @manupa-arm

# relay
src/relay/** @jroesch @slyubomirsky @icemelon @MarisaKirisame @ZihengJiang @yzhliu @vinx13 @mbrookhart @jwfromm @zhiics @anijain2305 @wweic @eqy @junrushao1994
include/tvm/relay/** @jroesch @slyubomirsky @icemelon @MarisaKirisame @ZihengJiang @yzhliu @vinx13 @mbrookhart @jwfromm @zhiics @anijain2305 @wweic @eqy @junrushao1994
python/tvm/relay/** @jroesch @slyubomirsky @icemelon @MarisaKirisame @ZihengJiang @yzhliu @vinx13 @mbrookhart @jwfromm @zhiics @anijain2305 @wweic @eqy @junrushao1994


# relay/qnn
src/relay/qnn/** @jwfromm @anijain2305 @ZihengJiang
inlcude/tvm/relay/qnn/** @jwfromm @anijain2305 @ZihengJiang
python/tvm/relay/qnn/** @jwfromm @anijain2305 @ZihengJiang

# relay/backend/contrib: BYOC
src/relay/backend/contrib/** @zhiics @trevor-m @comaniac @mbaret @manupa-arm

# relay/frontends
python/tvm/relay/frontend/** @jwfromm @mbrookhart @srkreddy1238 @siju-samuel @Huyuwei @hlu1 @kazum @PariksheetPinjari909

# topi: Operator definitions
src/topi/** @Laurawly @Huyuwei @kevinthesun @jwfromm @vinx13 @masahi @FronzenGene @yzhliu @mbrookhart @ZihengJiang @jcf94
include/tvm/topi/** @Laurawly @Huyuwei @kevinthesun @jwfromm @vinx13 @masahi @FronzenGene @yzhliu @mbrookhart @ZihengJiang @jcf94
python/tvm/topi/** @Laurawly @Huyuwei @kevinthesun @jwfromm @vinx13 @masahi @FronzenGene @yzhliu @mbrookhart @ZihengJiang @jcf94


# tvm/driver/
python/tvm/driver/** @leandron @jwfromm @tqchen @jroesch

# tvm/driver/tvmc
python/tvm/driver/tvmc/** @leandron @jwfromm
4 changes: 3 additions & 1 deletion python/tvm/meta_schedule/testing/te_workload.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,9 @@ def conv3d_ndhwc( # pylint: disable=invalid-name,missing-docstring
groups: int = 1,
) -> Tuple[te.Tensor, te.Tensor, te.Tensor]:
inputs = te.placeholder((N, D, H, W, CI), name="inputs")
weight = te.placeholder((kernel_size, kernel_size, kernel_size, CI // groups, CO), name="weight")
weight = te.placeholder(
(kernel_size, kernel_size, kernel_size, CI // groups, CO), name="weight"
)
batch_size, in_d, in_h, in_w, _ = inputs.shape
k_d, k_h, k_w, channel_per_group, out_channel = weight.shape
out_channel_per_group = out_channel // groups
Expand Down
2 changes: 1 addition & 1 deletion python/tvm/meta_schedule/testing/tir_tensor_intrin.py
Original file line number Diff line number Diff line change
Expand Up @@ -304,4 +304,4 @@ def wmma_store_impl(a: T.handle, c: T.handle) -> None:
"wmma_store",
wmma_store_desc,
wmma_store_impl,
)
)
3 changes: 1 addition & 2 deletions python/tvm/script/tir/special_stmt.py
Original file line number Diff line number Diff line change
Expand Up @@ -430,8 +430,7 @@ def block_attr(attrs: Mapping[str, Object], span: Span = None):
span,
)
attrs = {
key: String(val) if isinstance(val, str) else val
for key, val in attrs.items()
key: String(val) if isinstance(val, str) else val for key, val in attrs.items()
}
block_scope.annotations = attrs

Expand Down
1 change: 0 additions & 1 deletion src/arith/int_set.cc
Original file line number Diff line number Diff line change
Expand Up @@ -787,7 +787,6 @@ Array<IntSet> EvalSet(const Array<PrimExpr>& exprs, const Map<Var, IntSet>& dom_
return result;
}


IntSet EvalSet(Range r, const Map<Var, IntSet>& dom_map) {
Analyzer ana;
IntervalSetEvaluator m(&ana, dom_map);
Expand Down
5 changes: 3 additions & 2 deletions src/arith/iter_affine_map.cc
Original file line number Diff line number Diff line change
Expand Up @@ -917,7 +917,7 @@ Array<IterSumExpr> DetectIterMap(const Array<PrimExpr>& indices, const Map<Var,
<< "Fail to collect constraints from iteration predicate: " << predicate);
return Array<IterSumExpr>();
}

// We have to make sure when we visit an iterator, all the constraints related with its successors
// in the iter var graph has been visited, where the expression of this iterator will contain the
// expression of its successor, so we sort them by their sizes.
Expand Down Expand Up @@ -1308,7 +1308,8 @@ class IterMapToExprNormalizer : public ExprMutator {
} else if (analyzer_->CanProve(expr->source->extent == expr->lower_factor * expr->extent)) {
return floordiv(source, expr->lower_factor) * expr->scale;
} else {
return floordiv(floormod(source, expr->lower_factor * expr->extent), expr->lower_factor) * expr->scale;
return floordiv(floormod(source, expr->lower_factor * expr->extent), expr->lower_factor) *
expr->scale;
}
}

Expand Down
2 changes: 1 addition & 1 deletion src/arith/modular_set.cc
Original file line number Diff line number Diff line change
Expand Up @@ -204,7 +204,7 @@ class ModularSetAnalyzer::Impl : public ExprFunctor<ModularSetAnalyzer::Entry(co
Entry a = VisitExpr(op->a);
int64_t coeff = ZeroAwareGCD(a.coeff, c2);
return Entry(coeff, a.base % c2);
}
}
return Everything();
}

Expand Down
1 change: 0 additions & 1 deletion src/driver/driver_api.cc
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,6 @@
#include <algorithm>
#include <mutex>
#include <stack>
#include <tvm/ir/transform.h>

#include "../printer/text_printer.h"

Expand Down
3 changes: 1 addition & 2 deletions src/tir/ir/stmt_functor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -700,8 +700,7 @@ Array<Range> Substitute(const Array<Range>& region, const Map<Var, PrimExpr>& vm
}

void PreOrderVisit(const ObjectRef& stmt_or_expr,
const std::function<bool(const ObjectRef&)>& fvisit,
bool visit_init_block) {
const std::function<bool(const ObjectRef&)>& fvisit, bool visit_init_block) {
class PreOrderVisitor : public StmtExprVisitor {
public:
explicit PreOrderVisitor(const std::function<bool(const ObjectRef&)>& f, bool visit_init_block)
Expand Down
5 changes: 3 additions & 2 deletions src/tir/schedule/primitive/blockize_tensorize.cc
Original file line number Diff line number Diff line change
Expand Up @@ -500,8 +500,9 @@ StmtSRef Blockize(ScheduleState self, const StmtSRef& loop_sref) {
}
arith::Analyzer analyzer;
DiagnosticContext diag_ctx(DiagnosticContext::Default(IRModule()));
Array<Array<arith::IterMark>> division = arith::SubspaceDivide(
block_realize->iter_values, iters, inner_iters, block_realize->predicate, false, &analyzer, diag_ctx);
Array<Array<arith::IterMark>> division =
arith::SubspaceDivide(block_realize->iter_values, iters, inner_iters,
block_realize->predicate, false, &analyzer, diag_ctx);
if (division.empty()) {
// It is possible to blockize if we can not do perfect subspace division if we can divide
// the block var bindings into two categories
Expand Down
5 changes: 2 additions & 3 deletions src/tir/transforms/compact_buffer_region.cc
Original file line number Diff line number Diff line change
Expand Up @@ -53,9 +53,8 @@ Region SimplifyAndNarrowBufferRegionFromNDIntSet(const NDIntSet& nd_int_set,
for (size_t i = 0; i < nd_int_set.size(); ++i) {
const arith::IntSet& int_set = nd_int_set[i];
Range range = int_set.CoverRange(Range(/*begin=*/0, /*end=*/original_shape[i]));
result.push_back(
Range::FromMinExtent(analyzer->Simplify(range->min),
analyzer->Simplify(min(original_shape[i], range->extent))));
result.push_back(Range::FromMinExtent(
analyzer->Simplify(range->min), analyzer->Simplify(min(original_shape[i], range->extent))));
}
return result;
}
Expand Down
31 changes: 15 additions & 16 deletions src/tir/transforms/memhammer_lower_auto_copy.cc
Original file line number Diff line number Diff line change
Expand Up @@ -17,21 +17,18 @@
* under the License.
*/

#include <tvm/arith/iter_affine_map.h>
#include <tvm/runtime/registry.h>
#include <tvm/target/target.h>
#include <tvm/tir/expr.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include "../../runtime/thread_storage_scope.h"
#include "../schedule/utils.h"
#include "ir_utils.h"
#include "memhammer_rewrite_rule.h"
#include "tvm/arith/iter_affine_map.h"
#include "tvm/runtime/registry.h"
#include "tvm/target/target.h"
#include "tvm/tir/expr.h"
#include "tvm/tir/op.h"
#include "tvm/tir/stmt_functor.h"
#include "tvm/tir/transform.h"
/*!
* \brief Automatically do memory optimizations for auto copy blocks
* \file memhammer_lower_auto_copy.cc
*/
#include "./ir_utils.h"
#include "./memhammer_rewrite_rule.h"

namespace tvm {
namespace tir {
Expand All @@ -54,7 +51,7 @@ static WmmaToShared wmma_to_shared;
* and choose the one with minimal conflict. However, this algorithm has exponential complexity.
* Suppose we have d dimensions and the padding size is 0-31, we need to calculate bank
* conflict for 32^{d-1} times.
* We propose a fast incremental algorithm that works for affine inputs, and it only caluculate
* We propose a fast incremental algorithm that works for affine inputs, and it only calculate
* bank conflict for 32*{d-1} times. To be specific, we first decide the optimal padding size for
* dimension d-2, then for dimension d-3, ..., finally for dimension 0. It involves 2 steps.
*
Expand Down Expand Up @@ -550,7 +547,7 @@ class AutoPadder {
}
StmtExprVisitor::VisitExpr_(op);
}

/*!
* \brief Take a typical warp and collect the iteration space for load_matrix_sync and
* store_matrix_sync
Expand Down Expand Up @@ -684,7 +681,7 @@ class AutoCopyMutator : public StmtExprMutator {

Stmt VisitStmt_(const BlockNode* op) final {
Block block;
//only rewrite the block annotated with "auto_copy"
// only rewrite the block annotated with "auto_copy"
if (is_one(Downcast<PrimExpr>(op->annotations.Get("auto_copy").value_or(Integer(0))))) {
block = runtime::Downcast<Block>(StmtMutator::VisitStmt_(op));
ICHECK(block->reads.size() == 1 && block->writes.size() == 1);
Expand Down Expand Up @@ -764,6 +761,7 @@ class ThreadExtentCollector : public StmtVisitor {
};

namespace transform {

Pass LowerAutoCopy() {
auto pass_func = [](PrimFunc f, IRModule m, PassContext ctx) {
auto* n = f.CopyOnWrite();
Expand All @@ -776,6 +774,7 @@ Pass LowerAutoCopy() {
}

TVM_REGISTER_GLOBAL("tir.transform.LowerAutoCopy").set_body_typed(LowerAutoCopy);

} // namespace transform
} // namespace tir
} // namespace tvm
Loading

0 comments on commit e62d1f2

Please sign in to comment.