https://lu.ma/DevOps-for-GenAI-SF
The purpose of this preparation sheet is to help participants get a lab environment set up and running before the event. We have provided some sample Python code that we can use as a template for some of the projects we'll be running in the hackathon. In addition to Llama 2, Bedrock, and others, we will try to provide alternative stacks at the event. Currently, the default starter stack consists of GPT3.5-turbo, Langchain, and MongoDB Atlas Vector Search.
https://devopsdays.org/conduct/
Overview |
---|
Signup for a free OpenAI account |
Create a Free MongoDB Atlas Account |
Run the first example |
Setup another Atlas Vector Database (Langchain Example) |
Setup Amazon Sagemaker environment id using AWS |
Setup Google Colab environment id using GCP |
Optional Labs |
Setting S3 Buckets for large files (optional) |
- Create an OpenAI account
- Select API keys in the left panel
- Verify by phone
- Create a secret key, save and copy it.
- Register a new account at: https://www.mongodb.com/cloud/atlas/register
- Select Product from top down menu
- Select Try for Free Signup for a free account
- Great, now verify your email
- Fill in the little questionnaire
- Takes you into the Deploy Database
- Select the free m0
- Use the defaultname Cluster0
- Default to N.Virginia (US-East-1)
- Keep Automate security setup enabled
- Keep Add sample dataset enabled
- Provide AWS
- Now create the deployment (button below/right)
- There is an automatic user created.
- (if copy and paste doesn't work, consider reloading the page)
- Fill out user and password & create the user
- Change the IP address that have access: (by clicking IP Access List)
- by default it will fill in your current IP address
- but for the hackathon we don't exactly what that IP will be
- Therefore we allow all IPs
- Use 0.0.0.0/0 for IP
- do this for hackathon only , for production restrict this
- Now Create the Database and Cluster.
- After the Database is created select the Connect button for Cluster0
- Select Drivers
- Select Python (3.12 or later is fine)
- Copy the connect string: it Should look like this:
mongodb+srv://<userid>:<password>@cluster0.ozciyn7.mongodb.net/?retryWrites=true&w=majority
- Replace the < and > characters with the user and password you created (don't include the < and > characters)
- Congratulations, you're all done and the mongodb database setup is completed
In this example we are going to load a HuggingFace dataset provided by MongoDB.
- select Database button on the left
- select the Browse Collections tab
- select create databases
- select add my own data
- Database sample_mflix
- Collection embedded_movies
Note: this same code can be used to load another MongoDB supplied HF dataset called "whatscooking"
Code example from the AIatMongoDB/embedded_movies (loading the collection) Use MDB_embedded_datasets.ipynb
!pip install pymongo
!pip install dataset
import os
os.environ['MONGODB_ATLAS_URI'] = <your atlas connection string>
from pymongo import MongoClient
import datasets
from datasets import load_dataset
from bson import json_util
uri = os.environ.get('MONGODB_ATLAS_URI')
client = MongoClient(uri)
db_name = 'sample_mflix'
collection_name = 'embedded_movies'
embedded_movies_collection = client[db_name][collection_name]
dataset = load_dataset("AIatMongoDB/embedded_movies")
insert_data = []
for movie in dataset['train']:
doc_movie = json_util.loads(json_util.dumps(movie))
insert_data.append(doc_movie)
if len(insert_data) == 1000:
embedded_movies_collection.insert_many(insert_data)
print("1000 records ingested")
insert_data = []
if len(insert_data) > 0:
embedded_movies_collection.insert_many(insert_data)
insert_data = []
print("Data Ingested")
See Using Using Amazon Sagemaker from Google Colab - MDB_embedded_movies.ipynb
or
See Using Google Colab from Amazon Sagemaker - MDB_embedded_movies.ipynb
Add a filter to see only one movie
{ "title": "Scarface" }
If you need to reload a collection.
- Select Database
- Select Brose Collections
- In the left window highlight the collection name
- Select the trash can icon and delete
This example is based on the following code:
https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas
- set up Atlas database:
- select Deployments > Database on the left side
- Select Browse Collections tab
- Select Create Database button on the left
- database langchain_db
- collection_name test
- After the Database is created and set up, we'll set up an Atlas search vector index.
- select Atlas Search on the left navigation side
- select your database source: Cluster0
- Click on “Create Search Index”
- Select Atlas Vector Search (Json editor)
- Select Database langchain_db and collection_name test
- IndexName vector_index
- Use the following json to configure:
{
"fields": [
{
"numDimensions": 1536,
"path": "embedding",
"similarity": "cosine",
"type": "vector"
}
]
}
Here’s what it should look like when you're done: Figure 1
https://www.mongodb.com/docs/atlas/atlas-vector-search/create-index/
From the AWS Console navigate the Amazon Sagemaker (note you can use the search bar.)
- After the Atlas Vector Database (Cluster0) is created and set up, we'll set up a Notebook Instance:
- select Notebook > Notebook Instances on the left side
- Select the “Create notebook Instance” button on top right
- In Notebook Instance Settings
- Add a Notebook Instance name (e.g., MDB-test1)
- Use the defaults for the other setting fields
- See Figure 2.
- In Permissions and encryption
- Select “Create a new role” from dropdown (take the defaults)
- See Figure 3
- Select Git repository from the left window
- Select the Default repository arrow
- Select Clone a public Git repository to this notebook instance only
- Paste the repo
- Create notebook
Use this link to clone... https://github.com/OperationalizingAI/Hackathon-2-22-24.git
(See Figure 4 for an example)
- After the instance is running (inService) create the Python notebook.
- Select the Open JupyterLabs action for the instance
- Under Notebook select the conda_python3 box
- Rename your notebook (e.g., MDB-example1.ipynb)
- Import the sample notebook provided with the workshop
- Load the same note books for Colab
- For the Langchain Example
- MDBLoad-SM.ipynb
- MDBRetrieve-SM.ipynb
- Run your code.
Note: The examples use a secrets manager. For Sagemaker we used Amazon Secrets Manager. Setup the following:
OPENAPI_API_KEY
MONGODB_ATLAS_CLUSTER_URI
Alternativly you can setup your keys in the notebook "getpass" or some other tool.
- Setup your secrets in Amazon Secrets Manager
- Remove all of the Google code from the norebook (installs and secrets management code)
- Add the following code to your notebook
Note:
I had to comment out llama-cpp-python in requirements.txt (figure out later)
import os
import json
import boto3
from botocore.exceptions import ClientError
def get_secret():
secret_name = "hackathon"
region_name = "us-east-1"
# Create a Secrets Manager client
session = boto3.session.Session()
client = session.client(
service_name='secretsmanager',
region_name=region_name
)
try:
get_secret_value_response = client.get_secret_value(
SecretId=secret_name
)
except ClientError as e:
# For a list of exceptions thrown, see
# https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html
raise e
secret = json.loads(get_secret_value_response['SecretString'])
#print(secret)
return secret
secret = get_secret()
openai_api_key = secret["OPENAI_API_KEY"]
os.environ['OPENAI_API_KEY'] = openai_api_key
MONGODB_ATLAS_CLUSTER_URI = secret["MONGODB_ATLAS_CLUSTER_URI"]
os.environ['MONGODB_ATLAS_CLUSTER_URI'] = MONGODB_ATLAS_CLUSTER_URI
langsmith_api_key = secret["LANGSMITH_API_KEY"]
os.environ['LANGSMITH_API_KEY'] = langsmith_api_key
- Create a free account on Google Colab
- Goto ( https://colab.research.google.com/ )
- Load the same note books for Colab
- MDBLoad-GC.ipynb
- MDBRetrieve-GC.ipynb
- Setup Google Secrets Manager (secrets)
- Run your code.
We created a number of lab exerciese based on the work of Sujee Maniyam. He did an amazing job researching and putting together a number of examples. However, they are all designed to run locally on your machine. We have created a number of his labs in this repository under the directory "labs/" that work with Google Colab and Amazon's Sagemaker. You can find his orignal work here:
https://github.com/sujee/mongodb-atlas-vector-search]
There also some great examples in Prakul Argarwal's (from MongoDB) repository here:
https://github.com/prakul/MongoDB-AI-Resources
Here's a list of the labs:
- lab1 - Connects to the client connection to the Atlas database. Assumes the sample_mflix databse exists.
- Lab1-2 - Simple program to generate images using OpenAI Dall-e-3.
- Lab2-1 - Simple OpenAI client connection test.
- Lab2-2 - Run simple quries against the sample_mflux (Netflix Movies) dataset. Setup a vector search index to quest embeddings.
- Lab2-3 - Run cosine similarity against chunked PDF files.
- Lab2-4 - Query embeddings from text-embedding-ada-002 to use to search Atlas vector database. The langchain_db must exist already.
- Lab3-1 - Querying with different embedding models.
- Lab3-2 - Adding multiple embeddings to a collection.
- Lab3-3 - Compare performance of different embeddings.
- Lab4-1 - Load Uber and Lyft 10k PDFs into Atlas Vector Search.
- Lab4-2 - DAL-E-3 Image generator.
- Additional Notes for Processing Large Files
- Setup a shared S3 blob
- Bucket
- Large-blobs
- Upload the file(s)
- Uncheck - Block all public access
- Take all the default
Create Bucket
Configure Bucket policy
{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "Statement1",
"Effect": "Allow",
"Principal": "*",
"Action": "s3:GetObject",
"Resource": "arn:aws:s3:::large-blobs/*"
}
]
}
From the Notebook console open the termial of the Instance…
aws s3 cp s3://large-blobs/void.tar.gz ~/void.tar.gz