-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrad_desc_dense.cpp
374 lines (343 loc) · 14.6 KB
/
grad_desc_dense.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
#include "grad_desc_dense.hpp"
#include "utils.hpp"
#include "regularizer.hpp"
#include <algorithm>
#include <cmath>
#include <ctime>
#include <cstdlib>
#include <iostream>
#include <random>
#include <string.h>
#include <sys/time.h>
#include <stdlib.h>
#include <chrono>
extern size_t MAX_DIM;
grad_desc_dense::outputs grad_desc_dense::SAGA(double* X, double* Y, size_t N
, blackbox* model, size_t iteration_no, double step_size) {
// Random Generator
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
std::default_random_engine generator(seed);
std::uniform_int_distribution<int> distribution(0, N - 1);
std::vector<double>* losses = new std::vector<double>;
std::vector<double>* times = new std::vector<double>;
struct timeval tp;
long int start_ms = 0;
int regular = model->get_regularizer();
double* lambda = model->get_params();
// Store results
losses->push_back(model->zero_oracle_dense(X, Y, N));
// Extra Pass for Create Gradient Table
losses->push_back((*losses)[0]);
times->push_back(0);
gettimeofday(&tp, NULL);
start_ms = tp.tv_sec * 1000 + tp.tv_usec / 1000;
double* new_weights = new double[MAX_DIM];
double* grad_core_table = new double[N];
double* aver_grad = new double[MAX_DIM];
copy_vec(new_weights, model->get_model());
memset(aver_grad, 0, MAX_DIM * sizeof(double));
// Init Gradient Core Table
for(size_t i = 0; i < N; i ++) {
grad_core_table[i] = model->first_component_oracle_core_dense(X, Y, N, i);
for(size_t j = 0; j < MAX_DIM; j ++)
aver_grad[j] += grad_core_table[i] * X[i * MAX_DIM + j] / N;
}
// First pass initialization
gettimeofday(&tp, NULL);
times->push_back(tp.tv_sec * 1000 + tp.tv_usec / 1000 - start_ms);
for(size_t i = 0; i < iteration_no; i ++) {
int rand_samp = distribution(generator);
double core = model->first_component_oracle_core_dense(X, Y, N, rand_samp, new_weights);
double past_grad_core = grad_core_table[rand_samp];
grad_core_table[rand_samp] = core;
for(size_t j = 0; j < MAX_DIM; j ++) {
// Update Weight
new_weights[j] -= step_size * ((core - past_grad_core)* X[rand_samp * MAX_DIM + j]
+ aver_grad[j]);
// Update Gradient Table Average
aver_grad[j] -= (past_grad_core - core) * X[rand_samp * MAX_DIM + j] / N;
regularizer::proximal_operator(regular, new_weights[j], step_size, lambda);
}
// Store results
if(!((i + 1) % (3 * N))) {
losses->push_back(model->zero_oracle_dense(X, Y, N, new_weights));
gettimeofday(&tp, NULL);
times->push_back(tp.tv_sec * 1000 + tp.tv_usec / 1000 - start_ms);
}
}
model->update_model(new_weights);
delete[] new_weights;
delete[] grad_core_table;
delete[] aver_grad;
return grad_desc_dense::outputs(losses, times);
}
grad_desc_dense::outputs grad_desc_dense::Uni_Acc(double* X, double* Y, size_t N
, blackbox* model, size_t iteration_no, double L, double mu, int Mode) {
std::vector<double>* losses = new std::vector<double>;
int regular = model->get_regularizer();
double kappa = L / mu;
double tauy = 1.0 / (sqrt(kappa) + 1.0);
double alpha = sqrt(L * mu) - mu;
double taux = 1.0 / sqrt(kappa);
if (Mode == 1)
taux = (2.0 * sqrt(kappa) - 1.0) / kappa;
double* lambda = model->get_params();
losses->push_back(model->zero_oracle_dense(X, Y, N));
double* x = new double[MAX_DIM];
double* z = new double[MAX_DIM];
copy_vec(x, model->get_model());
copy_vec(z, model->get_model());
for(int i = 0; i < iteration_no; i ++) {
double* y = new double[MAX_DIM];
for(int j = 0; j < MAX_DIM; j ++)
y[j] = tauy * z[j] + (1.0 - tauy) * x[j];
double* grad = new double[MAX_DIM];
memset(grad, 0, MAX_DIM * sizeof(double));
for(int j = 0; j < N; j ++) {
double core = model->first_component_oracle_core_dense(X, Y, N, j, y);
for(int k = 0; k < MAX_DIM; k ++)
grad[k] += (X[j * MAX_DIM + k] * core) / (double) N;
}
for(int j = 0; j < MAX_DIM; j ++) {
grad[j] += mu * y[j];
z[j] = alpha / (alpha + mu) * z[j] + mu / (alpha + mu) * y[j] - 1.0 / (alpha + mu) * grad[j];
x[j] = taux * z[j] + (1.0 - taux) * x[j];
}
if(Mode == 0)
losses->push_back(model->zero_oracle_dense(X, Y, N, x));
else
losses->push_back(model->zero_oracle_dense(X, Y, N, z));
delete[] grad;
delete[] y;
}
model->update_model(x);
delete[] x;
delete[] z;
std::vector<double>* times = new std::vector<double>;
return grad_desc_dense::outputs(losses, times);
}
grad_desc_dense::outputs grad_desc_dense::G_TM(double* X, double* Y, size_t N
, blackbox* model, size_t iteration_no, double L, double mu) {
std::vector<double>* losses = new std::vector<double>;
int regular = model->get_regularizer();
double kappa = L / mu;
double tauz = (sqrt(kappa) - 1.0) /(L * (sqrt(kappa) + 1.0));
double alpha = sqrt(L * mu) - mu;
double taux = (2.0 * sqrt(kappa) - 1.0) / kappa;
double* lambda = model->get_params();
losses->push_back(model->zero_oracle_dense(X, Y, N));
double* p_grad = new double[MAX_DIM];
double* z = new double[MAX_DIM];
double* y = new double[MAX_DIM];
copy_vec(z, model->get_model());
copy_vec(y, model->get_model());
memset(p_grad, 0, MAX_DIM * sizeof(double));
for(int j = 0; j < N; j ++) {
double core = model->first_component_oracle_core_dense(X, Y, N, j);
for(int k = 0; k < MAX_DIM; k ++)
p_grad[k] += (X[j * MAX_DIM + k] * core) / (double) N;
}
for(int k = 0; k < MAX_DIM; k ++)
p_grad[k] += mu * y[k];
for(int i = 0; i < iteration_no; i ++) {
for(int j = 0; j < MAX_DIM; j ++)
y[j] = taux * z[j] + (1.0 - taux) * y[j] + tauz * (mu * (y[j] - z[j]) - p_grad[j]);
memset(p_grad, 0, MAX_DIM * sizeof(double));
for(int j = 0; j < N; j ++) {
double core = model->first_component_oracle_core_dense(X, Y, N, j, y);
for(int k = 0; k < MAX_DIM; k ++)
p_grad[k] += (X[j * MAX_DIM + k] * core) / (double) N;
}
for(int j = 0; j < MAX_DIM; j ++) {
p_grad[j] += mu * y[j];
z[j] = alpha / (alpha + mu) * z[j] + mu / (alpha + mu) * y[j] - 1.0 / (alpha + mu) * p_grad[j];
}
losses->push_back(model->zero_oracle_dense(X, Y, N, z));
}
model->update_model(z);
delete[] p_grad;
delete[] z;
delete[] y;
std::vector<double>* times = new std::vector<double>;
return grad_desc_dense::outputs(losses, times);
}
grad_desc_dense::outputs grad_desc_dense::Katyusha(double* X, double* Y, size_t N
, blackbox* model, size_t iteration_no, double L, double mu, double tau_1) {
// Random Generator
std::vector<double>* losses = new std::vector<double>;
std::vector<double>* times = new std::vector<double>;
struct timeval tp;
long int start_ms = 0;
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
std::default_random_engine generator(seed);
std::uniform_int_distribution<int> distribution(0, N - 1);
size_t m = 2.0 * N;
size_t total_iterations = 0;
double tau_2 = 0.5;
if(1 - tau_1 - tau_2 < 0) tau_2 = 1 - tau_1;
double alpha = 1.0 / (tau_1 * 3.0 * L);
int regular = model->get_regularizer();
double* lambda = model->get_params();
double step_size_y = 1.0 / (3.0 * L);
double compos_factor = 1.0 + alpha * mu;
double compos_base = (pow((double)compos_factor, (double)m) - 1.0) / (alpha * mu);
double* compos_pow = new double[m + 1];
for(size_t i = 0; i <= m; i ++)
compos_pow[i] = pow((double)compos_factor, (double)i);
// double* compos_pow, compos_base;
double* y = new double[MAX_DIM];
double* z = new double[MAX_DIM];
double* x = new double[MAX_DIM];
double* full_grad = new double[MAX_DIM];
// init vectors
copy_vec(y, model->get_model());
copy_vec(z, model->get_model());
copy_vec(x, model->get_model());
// Init Weight Evaluate
losses->push_back(model->zero_oracle_dense(X, Y, N));
times->push_back(0);
gettimeofday(&tp, NULL);
start_ms = tp.tv_sec * 1000 + tp.tv_usec / 1000;
// OUTTER LOOP
for(size_t i = 0; i < iteration_no; i ++) {
double* full_grad_core = new double[N];
double* outter_weights = (model->get_model());
double* aver_weights = new double[MAX_DIM];
memset(full_grad, 0, MAX_DIM * sizeof(double));
memset(aver_weights, 0, MAX_DIM * sizeof(double));
// Full Gradient
for(size_t j = 0; j < N; j ++) {
full_grad_core[j] = model->first_component_oracle_core_dense(X, Y, N, j);
for(size_t k = 0; k < MAX_DIM; k ++) {
full_grad[k] += X[j * MAX_DIM + k] * full_grad_core[j] / (double) N;
}
}
// 0th Inner Iteration
for(size_t k = 0; k < MAX_DIM; k ++)
x[k] = tau_1 * z[k] + tau_2 * outter_weights[k]
+ (1 - tau_1 - tau_2) * y[k];
// INNER LOOP
for(size_t j = 0; j < m; j ++) {
int rand_samp = distribution(generator);
double inner_core = model->first_component_oracle_core_dense(X, Y, N, rand_samp, x);
for(size_t k = 0; k < MAX_DIM; k ++) {
double val = X[rand_samp * MAX_DIM + k];
double katyusha_grad = full_grad[k] + val * (inner_core - full_grad_core[rand_samp]);
double prev_z = z[k];
z[k] -= alpha * katyusha_grad;
regularizer::proximal_operator(regular, z[k], alpha, lambda);
//// For Katyusha With Update Option I //////
y[k] = x[k] - step_size_y * katyusha_grad;
regularizer::proximal_operator(regular, y[k], step_size_y, lambda);
////// For Katyusha With Update Option II //////
// y[k] = x[k] + tau_1 * (z[k] - prev_z);
aver_weights[k] += compos_pow[j] / compos_base * y[k];
// (j + 1)th Inner Iteration
if(j < m - 1)
x[k] = tau_1 * z[k] + tau_2 * outter_weights[k]
+ (1 - tau_1 - tau_2) * y[k];
}
total_iterations ++;
}
model->update_model(aver_weights);
delete[] aver_weights;
delete[] full_grad_core;
// Store results
losses->push_back(model->zero_oracle_dense(X, Y, N));
gettimeofday(&tp, NULL);
times->push_back(tp.tv_sec * 1000 + tp.tv_usec / 1000 - start_ms);
}
delete[] y;
delete[] z;
delete[] x;
delete[] full_grad;
delete[] compos_pow;
return grad_desc_dense::outputs(losses, times);
}
// ONLY with L2 Regularizer
grad_desc_dense::outputs grad_desc_dense::BS_SVRG(double* X, double* Y, size_t N
, blackbox* model, size_t iteration_no, double L, double mu, double alpha
, double choice) {
// Random Generator
std::vector<double>* losses = new std::vector<double>;
std::vector<double>* times = new std::vector<double>;
struct timeval tp;
gettimeofday(&tp, NULL);
long int start_ms = 0;
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
std::default_random_engine generator(seed);
std::uniform_int_distribution<int> distribution(0, N - 1);
size_t m = 2.0 * N;
size_t total_iterations = 0;
double c = 2.0 + sqrt(3);
double taux = (1 - mu / (c * L)) * (alpha + mu) / (alpha + L);
double tauz = taux / mu - alpha * (1 - taux) / (mu * (L - mu));
// Using numerical choice
if(choice == -1.0)
taux = (alpha + mu) / (alpha + L);
double prob_factor = (1.0 + mu / alpha) * (1.0 + mu / alpha);
double* prob_pow = new double[m + 1];
for(size_t i = 0; i <= m; i ++)
prob_pow[i] = pow((double)prob_factor, (double)i);
// For random update
unsigned seed2 = std::chrono::system_clock::now().time_since_epoch().count();
std::default_random_engine gen2(seed2);
std::discrete_distribution<int> disc_dist(prob_pow, prob_pow + m);
double* x = new double[MAX_DIM];
double* full_grad = new double[MAX_DIM];
// init vector
copy_vec(x, model->get_model());
// Init Weight Evaluate
losses->push_back(model->zero_oracle_dense(X, Y, N));
times->push_back(0);
gettimeofday(&tp, NULL);
start_ms = tp.tv_sec * 1000 + tp.tv_usec / 1000;
// OUTTER LOOP
for(size_t i = 0; i < iteration_no; i ++) {
double* full_grad_core = new double[N];
double* outter_x = (model->get_model());
double* aver_x = new double[MAX_DIM];
memset(full_grad, 0, MAX_DIM * sizeof(double));
memset(aver_x, 0, MAX_DIM * sizeof(double));
// Full Gradient
for(size_t j = 0; j < N; j ++) {
full_grad_core[j] = model->first_component_oracle_core_dense(X, Y, N, j);
for(size_t k = 0; k < MAX_DIM; k ++) {
full_grad[k] += X[j * MAX_DIM + k] * full_grad_core[j] / (double) N;
}
}
int store_index = disc_dist(gen2);
// INNER LOOP
for(size_t j = 0; j < m; j ++) {
int rand_samp = distribution(generator);
double* y = new double[MAX_DIM];
for(size_t k = 0; k < MAX_DIM; k ++)
y[k] = taux * x[k] + (1 - taux) * outter_x[k]
+ tauz * (mu * (outter_x[k] - x[k]) - full_grad[k] - mu * outter_x[k]);
double inner_core = model->first_component_oracle_core_dense(X, Y
, N, rand_samp, y);
if(j == store_index) {
for(size_t k = 0; k < MAX_DIM; k ++)
aver_x[k] = y[k];
}
for(size_t k = 0; k < MAX_DIM; k ++) {
double val = X[rand_samp * MAX_DIM + k], fac = alpha + mu;
double vr_grad = full_grad[k] + val * (inner_core - full_grad_core[rand_samp]) + mu * y[k];
x[k] = alpha / fac * x[k] + mu / fac * y[k] - 1.0 / fac * vr_grad;
}
total_iterations ++;
delete[] y;
}
model->update_model(aver_x);
delete[] aver_x;
delete[] full_grad_core;
// Store results
losses->push_back(model->zero_oracle_dense(X, Y, N, x));
gettimeofday(&tp, NULL);
times->push_back(tp.tv_sec * 1000 + tp.tv_usec / 1000 - start_ms);
}
delete[] x;
delete[] full_grad;
delete[] prob_pow;
return grad_desc_dense::outputs(losses, times);
}