forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
support excluded_layers for amp.decorate (PaddlePaddle#52871)
- Loading branch information
1 parent
c9d87e2
commit e7bbc04
Showing
3 changed files
with
263 additions
and
38 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
|
||
import paddle | ||
import paddle.nn.functional as F | ||
|
||
|
||
class ConvBNLayer(paddle.nn.Layer): | ||
def __init__( | ||
self, | ||
num_channels, | ||
num_filters, | ||
filter_size, | ||
stride=1, | ||
groups=1, | ||
act=None, | ||
): | ||
super().__init__() | ||
|
||
self._conv = paddle.nn.Conv2D( | ||
in_channels=num_channels, | ||
out_channels=num_filters, | ||
kernel_size=filter_size, | ||
stride=stride, | ||
padding=(filter_size - 1) // 2, | ||
groups=groups, | ||
bias_attr=None, | ||
) | ||
|
||
self._batch_norm = paddle.nn.BatchNorm(num_filters, act=act) | ||
|
||
def forward(self, inputs): | ||
y = self._conv(inputs) | ||
y = self._batch_norm(y) | ||
|
||
return y | ||
|
||
|
||
class Model(paddle.nn.Layer): | ||
def __init__( | ||
self, input_channel, hidden_size, fp16_conv=True, fp16_linear=True | ||
): | ||
super().__init__() | ||
self.conv = ConvBNLayer(input_channel, 8, 3) | ||
self.linear = paddle.nn.Linear(8, hidden_size) | ||
self.layernorm = paddle.nn.Sequential( | ||
paddle.nn.LayerNorm(hidden_size), | ||
paddle.nn.LayerNorm(hidden_size), | ||
) | ||
self.fp16_conv = fp16_conv | ||
self.fp16_linear = fp16_linear | ||
|
||
def forward(self, inputs): | ||
with paddle.amp.auto_cast(enable=self.fp16_conv): | ||
if not self.fp16_conv: | ||
inputs = inputs.astype('float32') | ||
x = self.conv(inputs) | ||
with paddle.amp.auto_cast(enable=self.fp16_linear): | ||
if not self.fp16_linear: | ||
x = x.astype('float32') | ||
x = self.linear(x) | ||
x = F.relu(x) | ||
x = self.layernorm(x) | ||
return x | ||
|
||
|
||
class TestAMPDecorate(unittest.TestCase): | ||
def check_results(self, fp32_layers=[], fp16_layers=[]): | ||
for idx in range(len(fp32_layers)): | ||
for layer in fp32_layers[idx].sublayers(include_self=False): | ||
self.assertEqual(layer.weight.dtype, paddle.float32) | ||
self.assertEqual(layer.bias.dtype, paddle.float32) | ||
|
||
for idx in range(len(fp16_layers)): | ||
for layer in fp16_layers[idx].sublayers(include_self=False): | ||
self.assertEqual(layer.weight.dtype, paddle.float16) | ||
self.assertEqual(layer.bias.dtype, paddle.float16) | ||
|
||
def test_excluded_layers(self): | ||
if not paddle.amp.is_float16_supported(): | ||
return | ||
model = Model(4, 8, fp16_conv=False) | ||
model = paddle.amp.decorate( | ||
models=model, | ||
level='O2', | ||
dtype='float16', | ||
excluded_layers=model.conv, | ||
) | ||
with paddle.amp.auto_cast(level='O2'): | ||
out = model(paddle.rand(shape=[2, 4, 8, 8], dtype='float32')) | ||
self.check_results( | ||
fp32_layers=[model.conv, model.layernorm], | ||
fp16_layers=[model.linear], | ||
) | ||
|
||
def test_excluded_layers_attr_list(self): | ||
if not paddle.amp.is_float16_supported(): | ||
return | ||
model = Model(4, 8, fp16_conv=False, fp16_linear=False) | ||
model = paddle.amp.decorate( | ||
models=model, | ||
level='O2', | ||
dtype='float16', | ||
excluded_layers=[model.conv, model.linear], | ||
) | ||
|
||
with paddle.amp.auto_cast(level='O2'): | ||
out = model(paddle.rand(shape=[2, 4, 8, 8], dtype='float32')) | ||
|
||
self.check_results( | ||
fp32_layers=[model.conv, model.linear, model.layernorm] | ||
) | ||
|
||
def test_excluded_layers_attr_types(self): | ||
if not paddle.amp.is_float16_supported(): | ||
return | ||
model = Model(4, 8) | ||
model = paddle.amp.decorate( | ||
models=model, | ||
level='O2', | ||
dtype='float16', | ||
excluded_layers=[paddle.nn.Conv2D, model.linear], | ||
) | ||
|
||
with paddle.amp.auto_cast(level='O2'): | ||
out = model(paddle.rand(shape=[2, 4, 8, 8], dtype='float16')) | ||
|
||
self.check_results( | ||
fp32_layers=[model.conv, model.linear, model.layernorm] | ||
) | ||
|
||
def test_excluded_layers_attr_none(self): | ||
if not paddle.amp.is_float16_supported(): | ||
return | ||
model = Model(4, 8) | ||
model = paddle.amp.decorate( | ||
models=model, | ||
level='O2', | ||
dtype='float16', | ||
excluded_layers=None, | ||
) | ||
|
||
with paddle.amp.auto_cast(level='O2'): | ||
out = model(paddle.rand(shape=[2, 4, 8, 8], dtype='float16')) | ||
|
||
self.check_results( | ||
fp32_layers=[model.layernorm, model.conv._batch_norm], | ||
fp16_layers=[model.conv._conv, model.linear], | ||
) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |