- Pixel based annotation at subcellular-resolution
- Does NOT need cell segmentation input
- Scalable to very large dataset (e.g. MOSTA dataset: 20 billion RNA reads, 1 billion locations, < 5 hours wall time)
pip install git+https://github.com/jiyuuchc/chioso.git
- ScRNAseq with cell type annotation in h5ad format
- Spatial data in space-deliminated text format with four feature columns: gene, x, y, counts.
- Common genes in both datasets (or a subset genes of interests) as a list of string saved in a JSON file
python -m chioso.pp-ref --data <h5ad file> --genes <gene file> --outdir <outdir>
# repeat if more than one input file
python -m chioso.pp-spatial --data <st text file> --genes <gene file> --outdir <outdir>
python -m chioso.train-predictor --config <cfg_predictor.py>
Default config files are under the configs/
python -m chioso.train-chioso --config <cfg_chioso.py>
Default config files are under the configs/
python -m chioso.inference --config <cfg_chioso.py> --checkpoint <model checkpoint>