Skip to content

Github Repo for ICML 2022 paper: Communication-Efficient Adaptive Federated Learning

Notifications You must be signed in to change notification settings

jinghuichen/FedCAMS

Repository files navigation

FedCAMS

This repository contains the PyTorch implementation of Federated AMSGrad with Max Stabilization (FedAMS), and Federated Communication compressed AMSGrad with Max Stabilization (FedCAMS) in https://arxiv.org/pdf/2205.02719.pdf (accepted by ICML 2022).

Prerequisites

Pytorch 1.11.0

CUDA 11.3

Running the experiments

To run the experiment for FedAMS:

python3 federated_main.py --model=resnet --dataset=cifar10 --gpu=0 --local_bs=20 --epochs=500 --iid=1 --optimizer=fedams --local_lr=0.01 --lr=1.0 --local_ep=3 --eps=0 --max_init=1e-3

To run the experiment for FedCAMS:

python3 federated_main-ef.py --model=resnet --dataset=cifar10 --gpu=0 --local_bs=20 --epochs=500 --iid=1 --optimizer=fedams --local_lr=0.01 --lr=1.0 --local_ep=3 --eps=0 --max_init=1e-3

Options

The default values for various paramters parsed to the experiment are given in options.py.

--dataset: Default: 'cifar10'. Options: 'mnist', 'fmnist', 'cifar100'.

--model: Default: 'cnn'. Options: 'mlp', 'resnet', 'convmixer'.

--gpu: To use cuda, set to a specific GPU ID.

--epochs: Number of rounds of training.

--local_ep: Number of local epochs.

--local_lr: Learning rate for local update.

--lr: Learning rate for global update.

--local_bs: Local update batch size.

--iid: Default set to IID. Set to 0 for non-IID.

--num_users: Number of users. Default is 100.

--frac: Fraction of users to be used for federated updates. Default is 0.1.

--optimizer: Default: 'fedavg'. Options: 'fedadam', 'fedams'.

--compressor: Compression strategy. Default: 'sign'. Options: 'topk64', 'topk128', 'topk256'.

Citation

Please check our paper for technical details and full results.

@inproceedings{wang2022communication,
  title={Communication-Efficient Adaptive Federated Learning},
  author={Wang, Yujia and Lin, Lu and Chen, Jinghui},
  booktitle={Proceedings of the International Conference on Machine Learning (ICML)},
  year={2022}
}
 

About

Github Repo for ICML 2022 paper: Communication-Efficient Adaptive Federated Learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages