Skip to content

jelber2/immunome_2014

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

immunome_2014

========

README.md for analytical methods for following manuscript:

Elbers, J.P., R.W. Clostio, and S.S. Taylor (2016) Population genetic
inferences using immune gene SNPs mirror patterns inferred by microsatellites.
Molecular Ecology Resources.

Python scripts for running PBS job submissions on LSU's SuperMikeII cluster.

Also bash code for analyzing resulting data on a CentOS 6.5 machine.

#####NOTE: Microsatellite data used the following population abbreviations: FGP, SD, GG, FL For simplicity, we renamed population abbreviations to follow the state they occurred in, so populations are renamed (in order): LA, AL, GA, FL respectively.

STEPS FOR QUALITY CONTROL, MAPPING, & SNP CALLING

Download fastq.gz.zip files for the two MiSeq runs from BaseSpace

Copy data to supermikeII

#run1 = miseq data from 9Sep2014
rsync --archive --stats --progress /work/jelber2/immunome_2014/run1/analysis_13944931_fastq.zip \
jelber2@mike.hpc.lsu.edu:/work/jelber2/immunome_2014/run1/ -n
#run2 = miseq data from 15Sep2014
rsync --archive --stats --progress /work/jelber2/immunome_2014/run2/analysis_14120117_fastq.zip \
jelber2@mike.hpc.lsu.edu:/work/jelber2/immunome_2014/run2/ -n
# create folder for combined data
cd /work/jelber2/immunome_2014/
mkdir combined

Unzip data (on SuperMikeII)

#run1 data
cd /work/jelber2/immunome_2014/run1/
unzip /work/jelber2/immunome_2014/run1/analysis_13944931_fastq.zip
cd Data/Intensities/BaseCalls
mkdir /work/jelber2/immunome_2014/run1/fastq
mv * /work/jelber2/immunome_2014/run1/fastq
cd /work/jelber2/immunome_2014/run1/
rm -r Data/
#run2 data
cd /work/jelber2/immunome_2014/run2/
unzip /work/jelber2/immunome_2014/run2/analysis_14120117_fastq.zip
cd Data/Intensities/BaseCalls
mkdir /work/jelber2/immunome_2014/run2/fastq
mv * /work/jelber2/immunome_2014/run2/fastq
cd /work/jelber2/immunome_2014/run2/
rm -r Data/

Rename the data

#rename run1 files
cd /work/jelber2/immunome_2014/run1/fastq/
#remove Undetermined reads
rm Undetermined_S0_L001_R1_001.fastq.gz Undetermined_S0_L001_R2_001.fastq.gz
#make file list
ls *.fastq.gz > convert_base_filenames.txt
#use regular expressions to create mv command to rename file
perl -pe "s/(\w+)_(S\d+)_(L001)_(R\d)_(001).(fastq.gz)\n/mv \1_\2_\3_\4_\5.\6 \1-\4.\6\n/" \
convert_base_filenames.txt > convert_base_filenames2.txt
#open the file with less and select everything with the mouse then press ctrl+shift+c
less convert_base_filenames2.txt
#press q to quit, then paste command into shell with ctrl+shift+v
#rename run2 files
cd /work/jelber2/immunome_2014/run2/fastq/
#remove Undetermined reads
rm Undetermined_S0_L001_R1_001.fastq.gz Undetermined_S0_L001_R2_001.fastq.gz
#make file list
ls *.fastq.gz > convert_base_filenames.txt
#use regular expressions to create mv command to rename file
perl -pe "s/(\w+)_(S\d+)_(L001)_(R\d)_(001).(fastq.gz)\n/mv \1_\2_\3_\4_\5.\6 \1-\4.\6\n/" \
convert_base_filenames.txt > convert_base_filenames2.txt
#open the file with less and select everything with the mouse then press ctrl+shift+c
less convert_base_filenames2.txt
#press q to quit, then paste command into shell with ctrl+shift+v

Install program and get reference genome

trimmomatic-0.32

cd /home/jelber2/bin/
wget http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/Trimmomatic-0.32.zip
unzip Trimmomatic-0.32.zip
mv Trimmomatic-0.32.zip Trimmomatic-0.32
#PATH=~/home/jelber2/bin/Trimmomatic-0.32/trimmomatic-0.32.jar

bbmerge-5.4 (part of bbmap-34.33)

cd /home/jelber2/bin/
mkdir bbmap-34.33
cd bbmap-34.33/
wget http://downloads.sourceforge.net/project/bbmap/BBMap_34.33.tar.gz?r=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fbbmap%2F%3Fsource%3Ddlp&ts=1421955805&use_mirror=iweb
mv BBMap_34.33.tar.gz\?r\=http\:%2F%2Fsourceforge.net%2Fprojects%2Fbbmap%2F\?source\=dlp BBMap_34.33.tar.gz
tar xzf BBMap_34.33.tar.gz
cd bbmap/
mv * ..
cd ..
rm -r bbmap
#PATH=~/bin/bbmap-34.33/bbmerge.sh

bwa-0.7.12

cd /home/jelber2/bin/
wget https://github.com/lh3/bwa/archive/0.7.12.tar.gz
mv 0.7.12 bwa-0.7.12.tar.gz
tar xzf bwa-0.7.12.tar.gz
mv bwa-0.7.12.tar.gz bwa-0.7.12
cd bwa-0.7.12/
make
#PATH=~/bin/bwa-0.7.12/bwa

stampy-1.0.23

cd /home/jelber2/bin/
wget http://www.well.ox.ac.uk/bioinformatics/Software/Stampy-latest.tgz
tar xzf Stampy-latest.tgz
cd stampy-1.0.23
make
#PATH=~/bin/stampy-1.0.23/stampy.py

java jre1.7.0

#had to download using firefox on my Centos machine
#saved in /home/jelber2/bin/
rsync --stats --archive --progress /home/jelber2/bin/jre-7-linux-x64.tar.gz jelber2@mike.hpc.lsu.edu:/home/jelber2/bin/ -n
#switched to SuperMikeII
cd /home/jelber2/bin/
tar xzf jre-7-linux-x64.tar.gz
mv jre-7-linux-x64.tar.gz jre1.7.0
#add  PATH += /home/jelber2/bin/jre1.7.0/bin  to .soft file
nano ~/.soft
#then resoft
#resoft
#PATH=~/bin/jre1.7.0/bin

picard-1.128

#on my Centos machine
cd /home/jelber2/bin/
wget https://github.com/broadinstitute/picard/releases/download/1.128/picard-tools-1.128.zip
rsync --stats --archive --progress /home/jelber2/bin/picard-tools-1.128.zip jelber2@mike.hpc.lsu.edu:/home/jelber2/bin/ -n
#switched to SuperMikeII
cd /home/jelber2/bin/
unzip picard-tools-1.128.zip
mv picard-tools-1.128.zip picard-tools-1.128
#PATH=~/bin/picard-tools-1.128/picard.jar

GATK-3.3.0

#had to download using firefox on my Centos machine
#saved in /home/jelber2/bin/GATK-3.3.0
rsync --stats --archive --progress /home/jelber2/bin/GATK-3.3.0/ jelber2@mike.hpc.lsu.edu:/home/jelber2/bin/GATK-3.3.0/ -n
#switched to SuperMikeII
cd /home/jelber2/bin/
cd GATK-3.3.0
tar xjf GenomeAnalysisTK-3.3-0.tar.bz2
#PATH=~/bin/GATK-3.3.0/GenomeAnalysisTK.jar

samtools-1.1

cd /home/jelber2/bin/
wget http://downloads.sourceforge.net/project/samtools/samtools/1.1/samtools-1.1.tar.bz2?r=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fsamtools%2Ffiles%2Fsamtools%2F1.1%2F&ts=1421967581&use_mirror=softlayer-dal
tar xjf samtools-1.1.tar.bz2 
mv samtools-1.1.tar.bz2 samtools-1.1
cd samtools-1.1
make
nano ~/.soft #add the following line to .soft file using nano
PATH += /home/jelber2/bin/samtools-1.1/

parallel-20150122

cd /home/jelber2/bin/
wget ftp://ftp.gnu.org/gnu/parallel/parallel-20150122.tar.bz2
tar xjf parallel-20150122.tar.bz2
mv parallel-20150122.tar.bz2 parallel-20150122
#PATH=~/bin/parallel-20150122/src/parallel

Got painted turtle reference genome

cd /work/jelber2/reference/
wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna.gz
# note move to ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/241/765/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna.gz
gunzip GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna.gz

Ran 01-make_indexes.sh on SuperMikeII to make indexes

qsub ~/scripts/immunome_2014/01-make_indexes.sh

Quality Control

Ran 02-trimmomatic.py on fastq.gz in:

# /work/jelber2/immunome_2014/run1/fastq/
cd /work/jelber2/immunome_2014/run1/fastq/
~/scripts/immunome_2014/02-trimmomatic.py *.fastq.gz
# /work/jelber2/immunome_2014/run2/fastq/
cd /work/jelber2/immunome_2014/run2/fastq/
#changes run1 to run2
perl -pe "s/run1/run2/g" ~/scripts/immunome_2014/02-trimmomatic.py > \
~/scripts/immunome_2014/02-trimmomatic-run2.py
python ~/scripts/immunome_2014/02-trimmomatic-run2.py *.fastq.gz

Mapping

Ran 03-bwa.py on trim.fastq.gz on trim.fastq.gz in:

# /work/jelber2/immunome_2014/run1/trimmed-data/
cd /work/jelber2/immunome_2014/run1/trimmed-data/
~/scripts/immunome_2014/03-bwa.py *.trim.fastq.gz
# /work/jelber2/immunome_2014/run2/trimmed-data/
cd /work/jelber2/immunome_2014/run2/trimmed-data/
#changes run1 to run2
perl -pe "s/run1/run2/g" ~/scripts/immunome_2014/03-bwa.py > \
~/scripts/immunome_2014/03-bwa-run2.py
python ~/scripts/immunome_2014/03-bwa-run2.py *.trim.fastq.gz

Ran 04-stampy.py on bwa.sam in:

# /work/jelber2/immunome_2014/run1/bwa-alignment/
cd /work/jelber2/immunome_2014/run1/bwa-alignment/
~/scripts/immunome_2014/04-stampy.py *.bwa.sam
# /work/jelber2/immunome_2014/run2/bwa-alignment/
cd /work/jelber2/immunome_2014/run2/bwa-alignment/
#changes run1 to run2
perl -pe "s/run1/run2/g" ~/scripts/immunome_2014/04-stampy.py > \
~/scripts/immunome_2014/04-stampy-run2.py
python ~/scripts/immunome_2014/04-stampy-run2.py *.bwa.sam

SNP Calling

Ran 05a-clean_sort_addRG.py stampy.bam in:

# /work/jelber2/immunome_2014/run1/stampy-alignment/
cd /work/jelber2/immunome_2014/run1/stampy-alignment/
~/scripts/immunome_2014/05a-clean_sort_addRG.py *.stampy.bam
# /work/jelber2/immunome_2014/run2/stampy-alignment/
cd /work/jelber2/immunome_2014/run2/stampy-alignment/
#changes run1 to run2 and RGID=%s_9Sep2014 to RGID=%s_15Sep2014
perl -pe "s/run1/run2/g" ~/scripts/immunome_2014/05a-clean_sort_addRG.py |
perl -pe "s/RGID=%s_9Sep2014/RGID=%s_15Sep2014/g" \
> ~/scripts/immunome_2014/05a-clean_sort_addRG-run2.py
python ~/scripts/immunome_2014/05a-clean_sort_addRG-run2.py *.stampy.bam

Ran 05b-clean_sort_addRG_markdup_realign.py

cd /work/jelber2/immunome_2014/run1/clean-sort-addRG/
~/scripts/immunome_2014/05b-clean_sort_addRG_markdup_realign.py *-CL-RG.bam

Need to create interval list to call SNPs in the immunome_baits target region

cd /work/jelber2/reference/
java -Xmx8g -jar ~/bin/picard-tools-1.128/picard.jar BedToIntervalList \
I=immunome_baits_C_picta-3.0.3.bed \
SEQUENCE_DICTIONARY=GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.dict \
O=immunome_baits_C_picta-3.0.3.interval.list

Ran 06-mergeBAM_callSNPs_initial.py

cd /work/jelber2/immunome_2014/combined/realign-around-indels/
~/scripts/immunome_2014/06-mergeBAM_callSNPs_initial.py *-realigned.bam

Need to get gsalib for R in order to produce recalibration plots

#see link below for further details
#http://gatkforums.broadinstitute.org/discussion/1244/what-is-a-gatkreport
#on SuperMikeII
R
install.packages("gsalib")
#YOU WILL GET THE FOLLOWING
#Warning in install.packages("gsalib") :
#'lib = "/home/packages/R/2.15.1/gcc-4.4.6/lib64/R/library"' is not writable
#Would you like to use a personal library instead?  (y/n) type y
#Would you like to create a personal library
#~/R/x86_64-unknown-linux-gnu-library/2.15
#to install packages into?  (y/n) type y
#quit R
q()
##Hmm, the above trick didn't work!
##Will have to generate the plots on my Centos machine

Ran 07-qual_score_recal01.py

cd /work/jelber2/immunome_2014/combined/realign-around-indels/
#excludes file ALL-samples-realigned.bam
find . -name '*-realigned.bam' -not -name 'ALL-samples-*' \
-exec ~/scripts/immunome_2014/07-qual_score_recal01.py {} \;

Ran 08-mergeBAM_callSNPs_recal01.py

cd /work/jelber2/immunome_2014/combined/call-SNPs-recal01/
~/scripts/immunome_2014/08-mergeBAM_callSNPs_recal01.py *-recal01.bam

Ran 09-qual_score_recal02.py

cd /work/jelber2/immunome_2014/combined/call-SNPs-recal01/
#excludes file ALL-samples-recal01.bam
find . -name '*-recal01.bam' -not -name 'ALL-samples-*' \
-exec ~/scripts/immunome_2014/09-qual_score_recal02.py {} \;

Ran 10-mergeBAM_callSNPs_recal02.py

cd /work/jelber2/immunome_2014/combined/call-SNPs-recal02/
~/scripts/immunome_2014/10-mergeBAM_callSNPs_recal02.py *-recal02.bam

Ran 11-qual_score_recal03.py

cd /work/jelber2/immunome_2014/combined/call-SNPs-recal02/
#excludes file ALL-samples-recal02.bam
find . -name '*-recal02.bam' -not -name 'ALL-samples-*' \
-exec ~/scripts/immunome_2014/11-qual_score_recal03.py {} \;

Ran 12-mergeBAM_callSNPs_recal03.py

cd /work/jelber2/immunome_2014/combined/call-SNPs-recal03/
~/scripts/immunome_2014/12-mergeBAM_callSNPs_recal03.py *-recal03.bam

Calculate seq_metrics.py

cd /work/jelber2/immunome_2014/combined/call-SNPs-recal03/
java -Xmx4g -jar ~/bin/picard-tools-1.128/picard.jar CalculateHsMetrics \
BAIT_INTERVALS=/work/jelber2/reference/immunome_baits_C_picta-3.0.3.interval.list \
BAIT_SET_NAME=Immunome \
TARGET_INTERVALS=/work/jelber2/reference/immunome_baits_C_picta-3.0.3.interval.list \
METRIC_ACCUMULATION_LEVEL=SAMPLE \
R=/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna \
I=ALL-samples-recal03.bam \
O=ALL-samples-recal03-baitsonly.hsmetrics.txt

plot coverage for each sample

run bedtools coverage on all bam files, then keep only lines with 'all' on them

#FROM http://gettinggeneticsdone.blogspot.com/2014/03/visualize-coverage-exome-targeted-ngs-bedtools.html
#ALSO FROM https://github.com/arq5x/bedtools-protocols/blob/master/bedtools.md
cd /media/immunome_2014/work/jelber2/immunome_2014/combined/
mkdir plot_coverage
cd plot_coverage/
#command below takes 5-10 minutes
while read i
do
~/bin/bedtools-2.22.1/bin/bedtools coverage -abam ../call-SNPs-recal03/$i-recal03.bam \
-b /media/immunome_2014/work/jelber2/reference/immunome_baits_C_picta-3.0.3.bed \
-hist | grep ^all > $i.baitcoverage.all.txt
done < ../call-SNPs-recal03/samplelist

Need to use featureCounts to summarize number of genes, reads per gene, etc

Get Subread

#featureCounts is part of the Subread package http://bioinf.wehi.edu.au/featureCounts/
cd ~/bin/
wget http://downloads.sourceforge.net/project/subread/subread-1.4.6/subread-1.4.6-Linux-x86_64.tar.gz?r=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fsubread%2Ffiles%2Fsubread-1.4.6%2F&ts=1423446986&use_mirror=iweb
mv subread-1.4.6-Linux-x86_64.tar.gz?r=http:%2F%2Fsourceforge.net%2Fprojects%2Fsubread%2Ffiles%2Fsubread-1.4.6%2F subread-1.4.6-Linux-x86_64.tar.gz
tar xzf subread-1.4.6-Linux-x86_64.tar.gz
mv subread-1.4.6-Linux-x86_64.tar.gz subread-1.4.6-Linux-x86_64

Get genometools-1.5.4 to annotate introns in gff file

cd ~/bin/
wget http://genometools.org/pub/genometools-1.5.4.tar.gz
tar xzf genometools-1.5.4.tar.gz
mv genometools-1.5.4.tar.gz genometools-1.5.4
cd genometools-1.5.4
#on MacOSX
make
#on CentOS
#install ruby first
#become superuser
su
yum install ruby.x86_64
#stop being a super user
exit
#make the executable using 64bit mode but without cairo
make 64bit=yes cairo=no
#test the install - will take a long time (>30min?)
make 64bit=yes cairo=no test

#####Use genometools to get introns cd /media/immunome_2014/work/jelber2/immunome_2014/combined/fasta-seqs/ ~/bin/genometools-1.5.4/bin/gt gff3 -addintrons yes
-o /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.gff.introns
/media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.gff

Need to prefilter the GFF file for immune genes

cd /media/immunome_2014/work/jelber2/reference/
#intersect the gff file
~/bin/bedtools-2.22.1/bin/bedtools intersect \
-a GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.gff.introns \
-b immunome_baits_C_picta-3.0.3.bed \
> GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic_immunome_baits.gff

Convert GFF file of gene annotations to GTF

cd /media/immunome_2014/work/jelber2/reference/
perl -pe "s/\S+=GeneID:(\d+).+/gene_id \"\1\";/g" \
GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic_immunome_baits.gff \
> GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic_immunome_baits.gtf

#####run subread cd /media/immunome_2014/work/jelber2/immunome_2014/combined/featureCounts/ ######all samples at once #at the gene level ~/bin/subread-1.4.6-Linux-x86_64/bin/featureCounts
-a /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic_immunome_baits.gtf
-o ALL.gene -F GTF -T 2 --ignoreDup
../call-SNPs-recal03/ALL-samples-recal03.bam #at exon level ~/bin/subread-1.4.6-Linux-x86_64/bin/featureCounts
-a /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic_immunome_baits.gtf
-o ALL.exon -F GTF -T 2 -f --ignoreDup
../call-SNPs-recal03/ALL-samples-recal03.bam ######each sample separately #at the gene level while read i do ~/bin/subread-1.4.6-Linux-x86_64/bin/featureCounts
-a /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic_immunome_baits.gtf
-o $i.gene -F GTF -T 2 --ignoreDup ../call-SNPs-recal03/$i-recal03.bam done < ../call-SNPs-recal03/samplelist #at the exon level while read i do ~/bin/subread-1.4.6-Linux-x86_64/bin/featureCounts
-a /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic_immunome_baits.gtf
-o $i.exon -F GTF -T 2 -f --ignoreDup ../call-SNPs-recal03/$i-recal03.bam done < ../call-SNPs-recal03/samplelist

write an R function to do the following

#####count number of possible immune genes wc -l AL102.gene #total genes = 632 (after subtracting 2 header lines) #####count number of possible immune gene exons grep -v "#" ALL.exon |
grep -v "Geneid" |
cut -f 2-4 |
awk -v OFS='\t' '{a=$2-1;print $1,a,$3;}' - |
sort -k 1,1 -k2,2n |
~/bin/bedtools-2.22.1/bin/bedtools merge |
wc -l #total exons = 5425 #####how many different immune genes were captured grep -Pv "0$" ALL.gene | wc -l #558 (after subtracting 2 header lines) #####how many different immune genes exons were captured grep -Pv "0$" ALL.exon |sort | cut -f 1| uniq -c | perl -pe "s/ +/\t/g" | perl -ane '$sum += $F[0]; END {print $sum}' #4430 (after subtracting 2 header lines) #####count number of genes per sample while read i do test=$(grep -Pv "0$" $i.gene | wc -l) echo -e $i'\t'$test > $i.gene.count done &lt; ../call-SNPs-recal03/samplelist cat *.gene.count &gt; gene.counts.per.sample #####count number of exons per sample while read i do grep -Pv "0$" $i.exon |sort | cut -f 1| uniq -c |
perl -pe "s/ +/\t/g" |
perl -ane '$sum += $F[0]; END {print $sum; print "\n"}' > $i.exon.count done < ../call-SNPs-recal03/samplelist cat *.exon.count > exon.counts.per.sample

Ran 14-haplotypecaller.py

cd /work/jelber2/immunome_2014/combined/call-SNPs-recal03/
#excludes file ALL-samples-recal03.bam
find . -name '*-recal03.bam' -not -name 'ALL-samples-*' \
-exec ~/scripts/immunome_2014/14-haplotypecaller.py {} \;

Ran GenotypeGVCFs to perform joint genotyping

#on Cenots machine
cd /media/immunome_2014/work/jelber2/immunome_2014/combined/hc/
java -Xmx8g -jar ~/bin/GATK-3.3.0/GenomeAnalysisTK.jar \
-T GenotypeGVCFs \
-R /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna \
-stand_call_conf 30 \
-stand_emit_conf 10 \
--max_alternate_alleles 32 \
--variant AL102-raw-snps-indels.vcf \
--variant AL103-raw-snps-indels.vcf \
--variant AL106-raw-snps-indels.vcf \
--variant AL108-raw-snps-indels.vcf \
--variant FL846-raw-snps-indels.vcf \
--variant FL855-raw-snps-indels.vcf \
--variant FL857-raw-snps-indels.vcf \
--variant FL880-raw-snps-indels.vcf \
--variant GG1044-raw-snps-indels.vcf \
--variant GG1435-raw-snps-indels.vcf \
--variant GG1835-raw-snps-indels.vcf \
--variant GG462-raw-snps-indels.vcf \
--variant LA62-raw-snps-indels.vcf \
--variant LA66-raw-snps-indels.vcf \
--variant LA77-raw-snps-indels.vcf \
--variant LA78-raw-snps-indels.vcf \
-o ALL-samples-raw-snps-indels.vcf

Added expressions to filter variants

java -Xmx8g -jar ~/bin/GATK-3.3.0/GenomeAnalysisTK.jar \
-T VariantFiltration \
-R /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna \
-L /media/immunome_2014/work/jelber2/reference/immunome_baits_C_picta-3.0.3.interval.list \
-V ALL-samples-raw-snps-indels.vcf \
--clusterWindowSize 10 \
--filterExpression "MQ0 >= 4 && ((MQ0 / (1.0 * DP)) > 0.1)" \
--filterName "Bad_Validation" \
--filterExpression "QUAL < 30.0" \
--filterName "LowQual" \
--genotypeFilterExpression "DP < 10.0" \
--genotypeFilterName "Low_Read_Depth_Over_Sample" \
--genotypeFilterExpression "GQ < 20.0" \
--genotypeFilterName "Low_GenotypeQuality" \
-o ALL-samples-Q30-snps-indels.vcf

Got only Indel variants

java -Xmx8g -jar ~/bin/GATK-3.3.0/GenomeAnalysisTK.jar \
-R /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna \
-T SelectVariants \
-V ALL-samples-Q30-snps-indels.vcf \
-o ALL-samples-Q30-indels.vcf \
-selectType INDEL

Got only SNP variants

java -Xmx8g -jar ~/bin/GATK-3.3.0/GenomeAnalysisTK.jar \
-R /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna \
-T SelectVariants \
-V ALL-samples-Q30-snps-indels.vcf \
-o ALL-samples-Q30-snps.vcf \
-selectType SNP

Got "Truthing" SNPs for Variant Quality Score Recalibration

First got concordant SNPs between HaplotypeCaller and UnifiedGenotyper

java -Xmx8g -jar ~/bin/GATK-3.3.0/GenomeAnalysisTK.jar \
-R /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna \
-T SelectVariants \
--variant ALL-samples-Q30-snps.vcf \
--concordance ../call-SNPs-recal03/ALL-samples-recal03-Q30-SNPs.vcf \
-o concordant-snps-HCvsUG.vcf

#####Next got only SNPs passing filters java -Xmx8g -jar ~/bin/GATK-3.3.0/GenomeAnalysisTK.jar
-T SelectVariants
-R /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna
--variant concordant-snps-HCvsUG.vcf
-o concordant-snps-HCvsUG-PASS.vcf
--excludeFiltered

Second got concordant Indels between HaplotypeCaller and UnifiedGenotyper

java -Xmx8g -jar ~/bin/GATK-3.3.0/GenomeAnalysisTK.jar \
-R /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna \
-T SelectVariants \
--variant ../hc/ALL-samples-Q30-indels.vcf \
--concordance ../call-SNPs-recal03/ALL-samples-recal03-Q30-SNPs.vcf \
-o ../hc/concordant-indels-HCvsUG.vcf

#####Next got only indels passing filters java -Xmx8g -jar ~/bin/GATK-3.3.0/GenomeAnalysisTK.jar
-T SelectVariants
-R /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna
--variant ../hc/concordant-indels-HCvsUG.vcf
-o ../hc/concordant-indels-HCvsUG-PASS.vcf
--excludeFiltered #####Finally replaced 'PASS' with 'INDEL' perl -pe "s/PASS/INDEL/g"
../hc/concordant-indels-HCvsUG-PASS.vcf
> ../hc/concordant-indels-HCvsUG-PASS-renamed-INDEL.vcf

Ran Variant Recalibrator

cd /media/immunome_2014/work/jelber2/immunome_2014/combined/
mkdir vqsr
cd vqsr

#####Recalibrated snps java -Xmx8g -jar ~/bin/GATK-3.3.0/GenomeAnalysisTK.jar
-T VariantRecalibrator
-R /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna
-input ../hc/ALL-samples-Q30-snps.vcf
-resource:concordantSet,VCF,known=true,training=true,truth=true,prior=10.0 ../hc/concordant-snps-HCvsUG-PASS.vcf
-an QD -an MQ -an MQRankSum -an ReadPosRankSum -an FS -an SOR -an DP -an InbreedingCoeff
-recalFile VQSR-snps.recal
-mode SNP
-tranchesFile VQSR-snps.tranches
-rscriptFile VQSR-snps.plots.R
--maxGaussians 4 #####Recalibrated indels java -Xmx8g -jar ~/bin/GATK-3.3.0/GenomeAnalysisTK.jar
-T VariantRecalibrator
-R /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna
-input ../hc/ALL-samples-Q30-indels.vcf
-resource:concordantSet,VCF,known=true,training=true,truth=true,prior=10.0 ../hc/concordant-indels-HCvsUG-PASS.vcf
-an QD -an DP -an FS -an SOR -an ReadPosRankSum -an MQRankSum -an InbreedingCoeff
-recalFile VQSR-indels.recal
-mode INDEL
-tranchesFile VQSR-indels.tranches
-rscriptFile VQSR-indels.plots.R
--maxGaussians 2 #COULD NOT GET TO WORK with --maxGaussians 4 or 3, presumably because the #indel dataset (~200 indels) is too small.

Applied the recalibration on snps

java -Xmx8g -jar ~/bin/GATK-3.3.0/GenomeAnalysisTK.jar \
-T ApplyRecalibration \
-R /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna \
-input ../hc/ALL-samples-Q30-snps.vcf \
--ts_filter_level 99.5 \
-tranchesFile VQSR-snps.tranches \
-recalFile VQSR-snps.recal \
-o ALL-samples-Q30-snps-recal.vcf

Applied the recalibration on indels

java -Xmx8g -jar ~/bin/GATK-3.3.0/GenomeAnalysisTK.jar \
-T ApplyRecalibration \
-R /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna \
-input ../hc/ALL-samples-Q30-indels.vcf \
--ts_filter_level 99.0 \
-tranchesFile VQSR-indels.tranches \
-recalFile VQSR-indels.recal \
-o ALL-samples-Q30-indels-recal.vcf

Needed to use beagle to improve SNPs (using Linkage Disequilibrium) called by Haplotype Caller

Downloaded beagle

cd ~/bin
wget http://faculty.washington.edu/browning/beagle/beagle.r1398.jar

Ran beagle on snps and indels separately

cd /media/immunome_2014/work/jelber2/immunome_2014/combined/
mkdir beagle
cd beagle
#snps
java -Xmx8000m -jar ~/bin/beagle.r1398.jar \
gtgl=/media/immunome_2014/work/jelber2/immunome_2014/combined/vqsr/ALL-samples-Q30-snps-recal.vcf\
nthreads=2 \
out=/media/immunome_2014/work/jelber2/immunome_2014/combined/beagle/ALL-samples-Q30-snps-recal-beagle
#indels
java -Xmx8000m -jar ~/bin/beagle.r1398.jar \
gtgl=/media/immunome_2014/work/jelber2/immunome_2014/combined/vqsr/ALL-samples-Q30-indels-recal.vcf\
nthreads=2 \
out=/media/immunome_2014/work/jelber2/immunome_2014/combined/beagle/ALL-samples-Q30-indels-recal-beagle

========

STEPS FOR POPGEN

cd /media/immunome_2014/work/jelber2/immunome_2014/combined/
mkdir popgen
mkdir popgen-msat

For SNPs

cd popgen

Get only polymorphic loci

Downloaded vcftools

cd /home/jelber2/bin/
wget http://downloads.sourceforge.net/project/vcftools/vcftools_0.1.12b.tar.gz?r=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fvcftools%2Ffiles%2F&ts=1411515317&use_mirror=superb-dca2
tar -xzf vcftools_0.1.12b.tar.gz 
mv vcftools_0.1.12b.tar.gz vcftools_0.1.12b
cd vcftools_0.1.12b/
nano ~/.soft #add the following two lines to using nano.soft file
PATH+=/home/jelber2/bin/tabix-0.2.6
PERL5LIB = /home/jelber2/bin/vcftools_0.1.12b/perl
resoft #to refresh soft file
cd /home/jelber2/bin/vcftools_0.1.12b/
make #compile vcftools
# Path to vcftools executable
/home/jelber2/bin/vcftools_0.1.12b/bin/vcftools

Remove loci with AF=1

cd /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen/
#removes loci with AF=1
zcat ../beagle/ALL-samples-Q30-snps-recal-beagle.vcf.gz | grep -v "AF=1" \
> ALL-samples-Q30-snps-recal-beagle2.vcf
#still leaves some unwanted non-polymorphic SNPs?
#try calculating allele frequencies then
~/bin/vcftools_0.1.12b/bin/vcftools \
--vcf ALL-samples-Q30-snps-recal-beagle2.vcf \
--freq --out ALL-samples-Q30-snps-recal-beagle
#get only non-polymorphic loci
grep ":1" ALL-samples-Q30-snps-recal-beagle.frq | cut -f 1-2 > nonpolymorphicloci
grep -v "\s2\s" ALL-samples-Q30-snps-recal-beagle.frq | cut -f 1-2 > multiallelicloci
cat nonpolymorphicloci multiallelicloci > multiallelic_or_nonpolymorphicloci
#calculate number of di-,tri-,tetra-allelic loci
cut -f 3 ALL-samples-Q30-snps-recal-beagle.frq | sort | uniq -c
#    di = 20947 (includes non-polymorphic loci = 3046)
#   tri = 758
# tetra = 7
#
#filter out multiallelic_or_nonpolymorphicloci
#might take a few minutes
while read i
do
perl -li -e $i
perl -pi -e "s/(^$i)\t\.\t(.+)\n/remove\tlocus\t\n/" ALL-samples-Q30-snps-recal-beagle2.vcf
done < multiallelic_or_nonpolymorphicloci
grep -v "remove" ALL-samples-Q30-snps-recal-beagle2.vcf \
> ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf

Check loci for linkage disequilibrium and Hardy-Weinberg Equilibrium

Had to make populations.txt file and population-specific files for vcf filtering

# e.g., format (\t=tab)
#Sample\tpopulation1
#populations.txt, so you have only torts from each population in a file, one per line
#now get population-specific files
grep "AL" populations.txt > Alabama
grep "GG" populations.txt > Georgia
grep "FL" populations.txt > Florida
grep "LA" populations.txt > Louisiana

Hardy-Weinberg Equilibrium test

~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --hardy --out hwe.FL --keep Florida
~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --hardy --out hwe.GG --keep Georgia
~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --hardy --out hwe.LA --keep Louisiana
~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --hardy --out hwe.AL --keep Alabama

#####R function to count number of sites out of HWE (i.e., p_HWE < 0.05 after fdr correction) R ALhwe <-read.table(file ="hwe.AL.hwe", header = TRUE) ALhwe.fdr <- p.adjust(p = ALhwe$P_HWE, method = "fdr", n = length(ALhwe$P_HWE)) summary(ALhwe.fdr) LAhwe <-read.table(file ="hwe.LA.hwe", header = TRUE) LAhwe.fdr <- p.adjust(p = LAhwe$P_HWE, method = "fdr", n = length(LAhwe$P_HWE)) summary(LAhwe.fdr) FLhwe <-read.table(file ="hwe.FL.hwe", header = TRUE) FLhwe.fdr <- p.adjust(p = FLhwe$P_HWE, method = "fdr", n = length(FLhwe$P_HWE)) summary(FLhwe.fdr) GGhwe <-read.table(file ="hwe.GG.hwe", header = TRUE) GGhwe.fdr <- p.adjust(p = GGhwe$P_HWE, method = "fdr", n = length(GGhwe$P_HWE)) summary(GGhwe.fdr)

outputs linkage disequilibrium pvalues

~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --geno-chisq --out geno.FL --keep Florida
~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --geno-chisq --out geno.GG --keep Georgia
~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --geno-chisq --out geno.LA --keep Louisiana
~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --geno-chisq --out geno.AL --keep Alabama

#####R function to count number of sites out of linkage equi (i.e., PVAL < 0.05 after fdr correction) R setwd("/media/immunome_2014/work/jelber2/immunome_2014/combined/popgen") ALld = na.omit(read.table(file ="geno.AL.geno.chisq", header = TRUE)) ALld.fdr=p.adjust(p = ALld$PVAL, method = "fdr", n = length(ALld$PVAL)) summary(ALld.fdr) #summary(ALld$PVAL) GGld = na.omit(read.table(file ="geno.GG.geno.chisq", header = TRUE)) GGld.fdr=p.adjust(p = GGld$PVAL, method = "fdr", n = length(GGld$PVAL)) summary(GGld.fdr) #summary(GGld$PVAL) FLld = na.omit(read.table(file ="geno.FL.geno.chisq", header = TRUE)) FLld.fdr=p.adjust(p = FLld$PVAL, method = "fdr", n = length(FLld$PVAL)) summary(FLld.fdr) #summary(FLld$PVAL) LAld = na.omit(read.table(file ="geno.LA.geno.chisq", header = TRUE)) LAld.fdr=p.adjust(p = LAld$PVAL, method = "fdr", n = length(LAld$PVAL)) summary(LAld.fdr) #summary(LAld$PVAL)

Calculate nucleotide diversity (pi per site)

~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --site-pi --out pi.FL --keep Florida
~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --site-pi --out pi.GG --keep Georgia
~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --site-pi --out pi.LA --keep Louisiana
~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --site-pi --out pi.AL --keep Alabama

Calculate Tajima's D

#need to figure out "correct" window size
~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --TajimaD 120 --out tajimaD.120.FL --keep Florida
~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --TajimaD 1200 --out tajimaD.1200.FL --keep Florida
~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --TajimaD 2400 --out tajimaD.2400.FL --keep Florida
~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --TajimaD 120 --out tajimaD.FL --keep Florida
~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --TajimaD 120 --out tajimaD.GG --keep Georgia
~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --TajimaD 120 --out tajimaD.LA --keep Louisiana
~/bin/vcftools_0.1.12b/bin/vcftools --vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf --TajimaD 120 --out tajimaD.AL --keep Alabama

Convert VCF file to structure, fstat, and smartpca input

VCF to Structure

#####use PGDSpider #get the program cd ~/bin/ wget http://www.cmpg.unibe.ch/software/PGDSpider/PGDSpider_2.0.7.4.zip unzip PGDSpider_2.0.7.4.zip mv PGDSpider_2.0.7.4.zip PGDSpider_2.0.7.4 #use following command to generate spider.conf.xml and spid file in ../popgen directory java -Xmx1024m -Xms512m -jar ~/bin/PGDSpider_2.0.7.4/PGDSpider2-cli.jar
-inputfile /media/immunome_2014/work/jelber2/immunome_2014/combined/bayescan/ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf
-inputformat VCF
-outputfile /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen/structure-input.txt
-outputformat STRUCTURE #edit spider.conf.xml nano ~/bin/PGDSpider_2.0.7.4/spider.conf.xml #to add path to samtools #change #to /home/jelber2/bin/samtools-0.1.19/bcftools/bcftools #change #to /home/jelber2/bin/samtools-0.1.19/samtools #save and exit #edit the spid file nano /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen/template_VCF_STRUCTURE.spid #contents after editing, minus the leading spaces # spid-file generated: Wed Jan 14 18:47:06 CST 2015 # VCF Parser questions PARSER_FORMAT=VCF # Do you want to include a file with population definitions? VCF_PARSER_POP_QUESTION=true # Only input following regions (refSeqName:start:end, multiple regions: whitespace separated): VCF_PARSER_REGION_QUESTION= # What is the ploidy of the data? VCF_PARSER_PLOIDY_QUESTION=DIPLOID # Only output following individuals (ind1, ind2, ind4, ...): VCF_PARSER_IND_QUESTION= # Output genotypes as missing if the read depth of a position for the sample is below: VCF_PARSER_READ_QUESTION= # Take most likely genotype if "PL" or "GL" is given in the genotype field? VCF_PARSER_PL_QUESTION= # Do you want to exclude loci with only missing data? VCF_PARSER_EXC_MISSING_LOCI_QUESTION= # Select population definition file: VCF_PARSER_POP_FILE_QUESTION=/media/immunome_2014/work/jelber2/immunome_2014/combined/popgen/populations.txt # Only output SNPs with a phred-scaled quality of at least: VCF_PARSER_QUAL_QUESTION= # Do you want to include non-polymorphic SNPs? VCF_PARSER_MONOMORPHIC_QUESTION=false # Output genotypes as missing if the phred-scale genotype quality is below: VCF_PARSER_GTQUAL_QUESTION= # # STRUCTURE Writer questions WRITER_FORMAT=STRUCTURE # Save more specific fastSTRUCTURE format? STRUCTURE_WRITER_FAST_FORMAT_QUESTION=false # Specify the locus/locus combination you want to write to the STRUCTURE file: STRUCTURE_WRITER_LOCUS_COMBINATION_QUESTION= # Specify which data type should be included in the STRUCTURE file (STRUCTURE can only analyze one data type per file): STRUCTURE_WRITER_DATA_TYPE_QUESTION=SNP # Do you want to include inter-marker distances? STRUCTURE_WRITER_LOCI_DISTANCE_QUESTION=false #saved as vcf2structure.spid #####Do VCF to STRUCTURE file conversion java -Xmx1024m -Xms512m -jar ~/bin/PGDSpider_2.0.7.4/PGDSpider2-cli.jar
-inputfile /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen/ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf
-inputformat VCF
-outputfile /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen/structure-input.txt
-outputformat STRUCTURE
-spid /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen/vcf2structure.spid > structure-input.log

VCF to GENEPOP

#####create the spid file #replace the STRUCTURE section of vcf2structure.spid with the following for GENEPOP #minus the leading spaces nano /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen/vcf2structure.spid # GENEPOP Writer questions WRITER_FORMAT=GENEPOP # Specify the locus/locus combination you want to write to the GENEPOP file: GENEPOP_WRITER_LOCUS_COMBINATION_QUESTION= # Specify which data type should be included in the GENEPOP file (GENEPOP can only analyze one data type per file): GENEPOP_WRITER_DATA_TYPE_QUESTION=SNP #saved as vcf2genepop.spid #####Do VCF to GENEPOP file conversion java -Xmx1024m -Xms512m -jar ~/bin/PGDSpider_2.0.7.4/PGDSpider2-cli.jar
-inputfile /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen/ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf
-inputformat VCF
-outputfile /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen/genepop-input.txt
-outputformat GENEPOP
-spid /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen/vcf2genepop.spid > genepop-input.log

VCF to FSTAT

#####create the spid file #replace the STRUCTURE section of vcf2structure.spid with the following for FSTAT #minus the leading spaces nano /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen/vcf2structure.spid # FSTAT Writer questions WRITER_FORMAT=FSTAT # Specify which data type should be included in the FSTAT file (FSTAT can only analyze one data type per file): FSTAT_WRITER_DATA_TYPE_QUESTION=SNP # Save label file FSTAT_WRITER_LABEL_FILE_QUESTION= # Do you want to save an additional file with labels (population names)? FSTAT_WRITER_INCLUDE_LABEL_QUESTION=false # Specify the locus/locus combination you want to write to the FSTAT file: FSTAT_WRITER_LOCUS_COMBINATION_QUESTION= #saved as vcf2fstat.spid #####Do VCF to FSTAT file conversion java -Xmx1024m -Xms512m -jar ~/bin/PGDSpider_2.0.7.4/PGDSpider2-cli.jar
-inputfile /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen/ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf
-inputformat VCF
-outputfile /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen/fstat-input.txt
-outputformat FSTAT
-spid /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen/vcf2fstat.spid > fstat-input.log

Look at population structure with structure

Installed structure from source, to run on SuperMikeII

Get source

cd ~/bin/
mkdir structure
cd structure
wget http://pritchardlab.stanford.edu/structure_software/release_versions/v2.3.4/structure_kernel_source.tar.gz
tar xzf structure_kernel_source.tar.gz
cd structure_kernel_src/

compile

make

used the following setting for mainparams file created using Windows front-end version

    #define OUTFILE /work/jelber2/immunome_2014/combined/popgen/structure-results
    #define INFILE /work/jelber2/immunome_2014/combined/popgen/structure-input.txt
    #define NUMINDS 16
    #define NUMLOCI 17901
    #define LABEL 1
    #define POPDATA 1
    #define POPFLAG 0
    #define LOCDATA 0
    #define PHENOTYPE 0
    #define MARKERNAMES 1
    #define MAPDISTANCES 0
    #define ONEROWPERIND 0
    #define PHASEINFO 0
    #define PHASED 0
    #define RECESSIVEALLELES 0
    #define EXTRACOLS 0
    #define MISSING 
    #define PLOIDY 2
    #define MAXPOPS 1
    #define BURNIN 100000
    #define NUMREPS 1000000
    #define NOADMIX 0
    #define LINKAGE 0
    #define USEPOPINFO 0
    #define LOCPRIOR 0
    #define INFERALPHA 1
    #define ALPHA 1.0
    #define POPALPHAS 0
    #define UNIFPRIORALPHA 1
    #define ALPHAMAX 10.0
    #define ALPHAPROPSD 0.025
    #define FREQSCORR 1
    #define ONEFST 0
    #define FPRIORMEAN 0.01
    #define FPRIORSD 0.05
    #define INFERLAMBDA 0
    #define LAMBDA 1.0
    #define COMPUTEPROB 1
    #define PFROMPOPFLAGONLY 0
    #define ANCESTDIST 0 
    #define STARTATPOPINFO 0
    #define METROFREQ 10
    #define UPDATEFREQ 1

Ran structure using the following command for k1,k2,k3,k4,k5

cd /work/jelber2/immunome_2014/combined/popgen/
~/bin/structure/structure_kernel_src/structure \
-m mainparams.test.k1 \
-e ~/bin/structure/structure_kernel_src/extraparams
#etc.
#note we used default settings for extraparams
#(i.e., the correlated allele frequency and the admixture ancestry models)
#implemented on SuperMike II using /home/jelber2/scripts/immunome_2014/16-structure.py

Used STRUCTURE HARVESTER web v0.6.94 to select best K values

Used CLUMPAK web to visualize population assignments

http://clumpak.tau.ac.il/

Calculated basic genetic stats and performed pca with r package hierfstat

#analyses detailed in hierfstat-snps-correct.R

For msats

Create input files for full and parital microsatellite dataset

Original

cd /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen-msats-review2/
#original file = 11.03.09-RWC-arlequin-inpt-for-animal-conserv-paper-alldata-jpe-2015-02-25.arp

Same msats populations as for SNPs

#kept only LA,SD,GG,FL populations, named file as:
#11.03.09-RWC-arlequin-inpt-for-animal-conserv-paper-LA_SD_GG_FLdata-jpe-2015-02-25.arp
# = full microsatellite dataset in /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen-msats-review/

Same msats populations and individuals as for SNPs

#used only same individuals (minus GG population, which contained GG462 but did not contain GG1044, GG1435, GG1835)
#so used random selection of 3 others from within GG
grep -Po "GG\d+" \
11.03.09-RWC-arlequin-inpt-for-animal-conserv-paper-LA_SD_GG_FLdata-jpe-2015-02-25.arp | \
sort -R | head -n 3 > GG.3random
# named file as:
#11.03.09-RWC-arlequin-inpt-for-animal-conserv-paper-LA_SD_GG_FLdata-same-jpe-2015-02-25.arp
# = partial microsatellite dataset in /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen-msats-review2/

Get only polymorphic loci

#they are all polymorphic

Check loci for linkage disequilibrium and Hardy-Weinberg Equilibrium

# used Arlequin - see below, but all were in HWE and linkage equilibrium for both partial and full microsatellite datasets

Convert msat loci from ARLEQUIN to FSTAT,STRUCTURE FORMATS

ARLEQUIN to FSTAT

#####remaining conversion steps only shown for partial microsatellite dataset, but the same was done for the full microsatellite dataset #first created template_SPID file java -Xmx1024m -Xms512m -jar ~/bin/PGDSpider_2.0.8.3/PGDSpider2-cli.jar
-inputfile /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen-msats-review2/11.03.09-RWC-arlequin-inpt-for-animal-conserv-paper-LA_SD_GG_FLdata-same-jpe-2015-02-25.arp
-inputformat ARLEQUIN
-outputfile /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen-msats-review2/fstat-msat-input.txt
-outputformat FSTAT #edited template_ARLEQUIN_FSTAT.spid #saved the followin as arlequin2fstat.spid (minus the leading spaces) # spid-file generated: Wed Feb 25 15:09:01 CST 2015 # Arlequin Parser questions PARSER_FORMAT=ARLEQUIN # # FSTAT Writer questions WRITER_FORMAT=FSTAT # Specify which data type should be included in the FSTAT file (FSTAT can only analyze one data type per file): FSTAT_WRITER_DATA_TYPE_QUESTION=MICROSAT # Save label file FSTAT_WRITER_LABEL_FILE_QUESTION=/media/immunome_2014/work/jelber2/immunome_2014/combined/popgen-msats-review2/fstat-msats-populations.txt # Do you want to save an additional file with labels (population names)? FSTAT_WRITER_INCLUDE_LABEL_QUESTION=true # Specify the locus/locus combination you want to write to the FSTAT file: FSTAT_WRITER_LOCUS_COMBINATION_QUESTION= #convert the file java -Xmx1024m -Xms512m -jar ~/bin/PGDSpider_2.0.8.3/PGDSpider2-cli.jar
-inputfile /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen-msats-review2/11.03.09-RWC-arlequin-inpt-for-animal-conserv-paper-LA_SD_GG_FLdata-same-jpe-2015-02-25.arp
-outputfile /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen-msats-review2/fstat-msats-input.txt
-spid /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen-msats-review2/arlequin2fstat.spid > arlequin2fstat.log

ARLEQUIN to STRUCTURE

java -Xmx1024m -Xms512m -jar ~/bin/PGDSpider_2.0.8.3/PGDSpider2-cli.jar \
-inputfile /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen-msats-review2/11.03.09-RWC-arlequin-inpt-for-animal-conserv-paper-LA_SD_GG_FLdata-same-jpe-2015-02-25.arp \
-inputformat ARLEQUIN \
-outputfile /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen-msats-review2/structure-msats-input.txt \
-outputformat STRUCTURE
#replace the FSTAT section of arlequin2fstat.spid with the following for STRUCTURE
#minus the leading spaces
nano /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen-msats-review2/arlequin2fstat.spid
    # STRUCTURE Writer questions
    WRITER_FORMAT=STRUCTURE
    # Save more specific fastSTRUCTURE format?
    STRUCTURE_WRITER_FAST_FORMAT_QUESTION=false
    # Specify the locus/locus combination you want to write to the STRUCTURE file:
    STRUCTURE_WRITER_LOCUS_COMBINATION_QUESTION=
    # Specify which data type should be included in the STRUCTURE file  (STRUCTURE can only analyze one data type per file):
    STRUCTURE_WRITER_DATA_TYPE_QUESTION=SNP
    # Do you want to include inter-marker distances?
    STRUCTURE_WRITER_LOCI_DISTANCE_QUESTION=false
#saved files as arlequin2structure.spid
#convert the file
java -Xmx1024m -Xms512m -jar ~/bin/PGDSpider_2.0.8.3/PGDSpider2-cli.jar \
-inputfile /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen-msats-review2/11.03.09-RWC-arlequin-inpt-for-animal-conserv-paper-LA_SD_GG_FLdata-same-jpe-2015-02-25.arp \
-outputfile /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen-msats-review2/structure-msats-input.txt \
-spid /media/immunome_2014/work/jelber2/immunome_2014/combined/popgen-msats-review2/arlequin2structure.spid > arlequin2structure.log
#add loci names
sed -i 1i"\\\t\t1 2 3 4 5 6 7 8 9 10" structure-msats-input.txt

Look at population structure with structure

#copy mainparams files
cp ../popgen-msats-review/mainparams.test.0* .
#modify the directory and number of loci with perl
perl -pi -e "s/popgen-msats-review/popgen-msats-review2/g" mainparams.test.0*
perl -pi -e "s/101/16/g" mainparams.test.0*

Ran structure using the following command for k1,k2,k3,k4,k5 on SuperMikeII

cd /work/jelber2/immunome_2014/combined/popgen-msats-review2/
~/bin/structure/structure_kernel_src/structure \
-m mainparams.test.0* \
-e ~/bin/structure/structure_kernel_src/extraparams####Used STRUCTURE HARVESTER web v0.6.94 to select best K values
#implemented in using 16-structure-msats.py

Used CLUMPAK web to visualize population assignments

http://clumpak.tau.ac.il/

Calculated basic genetic stats with r package hierfstat and also pca

#partial microsatellite dataset analyses detailed in hierfstat-part-msats.r saved results in hierfstat-part-msats.RData
#full microsatellite dataset analyses detailed in hierfstat-msats.r saved results in hierfstat_msats_correct_R_workspace.RData

Subsampling power analysis

#partial microsatellite dataset analyses detailed in power-analysis-part-msats.r saved results in power-analysis-part-msats.RData
#full microstatellite dataset analyses detailed in power_analysis.r saved results in power_analysis.RData

========

STEPS FOR GETTING NAMES OF GENES WITH POLYMORPHIC SNPs

cd /media/immunome_2014/work/jelber2/immunome_2014/combined/
mkdir snp_genes
cd snp_genes
# use bedtools to intersect gene annotations with polymorphic snps
~/bin/bedtools-2.22.1/bin/bedtools intersect \
-a /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.gff \
-b ../popgen/ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf | \
# use awk to get only "genes"
awk 'BEGIN{OFS="\t";} $3=="gene" {print $1,$2,$3,$4,$5,$6,$7,$8,$9}' - > snp_genes.gff
# use perl to get only gene names, then sort them, and get only unique names
perl -pe "s/\S+=GeneID:(\d+).+/\1/g" snp_genes.txt |sort | uniq > snp_genes2.txt
#use R to get the descriptions
#the following is implemented in:
# C:/Users/jelber2/Dropbox/LSU/Dissertation/Manuscripts/immunome_2014/snps_gene_names.R
R
library("genomes")
setwd("C:/Users/jelber2/Dropbox/LSU/Dissertation/Manuscripts/immunome_2014/")
setwd("/Users/jelbers/Documents/Documents/LSU/Dissertation/Manuscripts/immunome_2014/")
input <- read.table("snps-genes.names.count.txt")
Sys.setenv(email="jelber2@lsu.edu")
#
output <- genomes::efetch(id = input$V2,
                          "gene",
                          "gb",
                          "xml")
output2 <- output[grepl("<Gene-ref_desc>.+</Gene-ref_desc>",
                        output,
                        perl=TRUE)]
output3 <- sub("\\s+<Gene-ref_desc>(.+)</Gene-ref_desc>",
               "\\1",
               output2,
               perl=TRUE)
allgenes <- sort(unique(output3))
MHC <- allgenes[agrepl("histo",allgenes)]
TLR <- allgenes[grepl("toll",allgenes)]
q()

========

STEPS FOR VARIANT ANNOTATION

Download Tools First

Downloaded snpEff

#ideally want to know if variants will affect protein structure and possibly immune gene function
cd /work/jelber2/reference
wget http://iweb.dl.sourceforge.net/project/snpeff/snpEff_latest_core.zip
unzip snpEff_latest_core.zip

Added Chrysemys_picta_bellii-3.0.3 to snpEff.config using nano

cd /media/immunome_2014/work/jelber2/reference/snpEff
nano snpEff.config # added the following four lines after the Capsella_rubella_v1.0 entry (remove 4 spaces on left if cut and pasting)
# Chrysemys_picta_bellii-3.0.3
Chrysemys_picta_bellii-3.0.3.genome : western painted turtle
	Chrysemys_picta_bellii-3.0.3.reference : ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3/
	Chrysemys_picta_bellii-3.0.3.M.codonTable : Standard

Created data directory for Chrysemys_picta_bellii-3.0.3 genome

cd /media/immunome_2014/work/jelber2/reference/snpEff
mkdir data
cd data
mkdir Chrysemys_picta_bellii-3.0.3
cd Chrysemys_picta_bellii-3.0.3
# downloaded FASTA file
wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna.gz
# snpEff requires genome.fa file to be called "sequences.fa"
mv GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna.gz sequences.fa.gz
# have to unzip sequences.fa.gz
gunzip sequences.fa.gz
# downloaded gff3 file (i.e., gene annotation file)
wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.gff.gz
# snpEff requires gene annotation file be called "genes.gff"
mv GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.gff.gz genes.gff.gz
# unzipped genes.gff.gz
gunzip genes.gff.gz
# download protein sequences
wget ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_protein.faa.gz
mv GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_protein.faa.gz protein.fa.gz
gunzip protein.fa.gz

Built snpEff database for Chrysemys_picta_bellii-3.0.3

cd /media/immunome_2014/work/jelber2/reference/snpEff
# used snpEff_build.py script to implement command below, which took < 30 minutes
java -jar -Xmx8g /media/immunome_2014/work/jelber2/reference/snpEff/snpEff.jar build -gff3 -v Chrysemys_picta_bellii-3.0.3 2>&1 | tee Chrysemys_picta_bellii-3.0.3.build

Downloaded bcftools

cd ~/bin/
git clone --branch=develop git://github.com/samtools/htslib.git
git clone --branch=develop git://github.com/samtools/bcftools.git
cd bcftools; make

Need to look for protein altering variants shared by samples in the same population

Split vcf file from GATK for snpEff

#snpEff needs ALL-samples*.vcf file split by sample (i.e., into Sample1.vcf, Sample2.vcf)
cd /media/immunome_2014/work/jelber2/immunome_2014/combined/call-SNPs-recal03/
ls *-recal03.bam | grep -Po '^\w+'| sort -u | grep -v 'ALL' > samplelist
mkdir ../split-vcfs
cd ../split-vcfs/
cp ../popgen/ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf .
#compress snps and index with tabix
~/bin/samtools-1.1/htslib-1.1/bgzip ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf
~/bin/samtools-1.1/htslib-1.1/tabix -p vcf ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf.gz
#split files
#code to split each vcf file
while read i
do
~/bin/bcftools/bcftools view -s $i ALL-samples-Q30-snps-recal-beagle-polymorphic.vcf.gz > $i-snps.vcf
done < ../call-SNPs-recal03/samplelist

Ran snpEff on each split vcf file

cd /media/immunome_2014/work/jelber2/immunome_2014/combined/split-vcfs/
# command below to run snpEff on all samples in samplelist
# not implemented on SuperMikeII b/c process was < 15 min
while read i
do
java -Xmx8g -jar /media/immunome_2014/work/jelber2/reference/snpEff/snpEff.jar \
-v -i vcf -o gatk \
Chrysemys_picta_bellii-3.0.3 \
$i-snps.vcf > $i-snps-snpeff.vcf
mv snpEff_genes.txt $i-snps-snpeff-genes.txt
mv snpEff_summary.html $i-snps-snpeff-summary.html
done < ../call-SNPs-recal03/samplelist

Ran VariantAnnotator on each snpeff file

while read i
do
rm $i-snps.vcf.idx
rm $i-snps-snpeff.vcf.idx
java -Xmx8g -jar ~/bin/GATK-3.3.0/GenomeAnalysisTK.jar \
-T VariantAnnotator \
-R /media/immunome_2014/work/jelber2/reference/GCF_000241765.3_Chrysemys_picta_bellii-3.0.3_genomic.fna \
-A SnpEff \
--variant $i-snps.vcf \
--snpEffFile $i-snps-snpeff.vcf \
-L $i-snps.vcf \
-o $i-snps-annotated.vcf
done < ../call-SNPs-recal03/samplelist

Merge split, annotated vcfs

#compress then index split snp files
while read i
do
~/bin/samtools-1.1/htslib-1.1/bgzip -f $i-snps-annotated.vcf
~/bin/samtools-1.1/htslib-1.1/tabix -p vcf $i-snps-annotated.vcf.gz
done < ../call-SNPs-recal03/samplelist
#merge snp files and index them
~/bin/bcftools/bcftools merge \
-o ALL-samples-snps-annotated.vcf \
-O v -m none \
 ../split-vcfs/*-snps-annotated.vcf.gz

========

STEPS for Number of Unpaired reads

Use statistics from Trimmomatic

cd /media/immunome_2014/work/jelber2/immunome_2014/run1/trimmed-data/
grep "Input Read Pairs" Trimmomatic-* > ~/Desktop/trimmomatic-data.txt
cd /media/immunome_2014/work/jelber2/immunome_2014/run2/trimmed-data/
grep "Input Read Pairs" Trimmomatic-* > ~/Desktop/trimmomatic-data2.txt
cd ~/Desktop/
cat trimmomatic-data.txt trimmomatic-data2.txt > trimmomatic.txt
perl -pe "s/\w+-\w+.\w+:Input Read Pairs: (\d+) Both Surviving: (\d+) .+/\1\t\2/" trimmomatic.txt > trimmomatic-calc.txt
R
df <- read.table("trimmomatic-calc.txt")
df$V3 <- df$V1 - df$V2
sum(df$V1)
# 65,724,672 total pairs of reads before trimming
sum(df$V3)
# 9,079,403 unpaired reads surviving trimming

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published