Skip to content

Commit

Permalink
[SPARK-4789] [SPARK-4942] [SPARK-5031] [mllib] Standardize ML Predict…
Browse files Browse the repository at this point in the history
…ion APIs

This is part (1a) of the updates from the design doc in [https://docs.google.com/document/d/1BH9el33kBX8JiDdgUJXdLW14CA2qhTCWIG46eXZVoJs]

**UPDATE**: Most of the APIs are being kept private[spark] to allow further discussion.  Here is a list of changes which are public:
* new output columns: rawPrediction, probabilities
  * The “score” column is now called “rawPrediction”
* Classifiers now provide numClasses
* Params.get and .set are now protected instead of private[ml].
* ParamMap now has a size method.
* new classes: LinearRegression, LinearRegressionModel
* LogisticRegression now has an intercept.

### Sketch of APIs (most of which are private[spark] for now)

Abstract classes for learning algorithms (+ corresponding Model abstractions):
* Classifier (+ ClassificationModel)
* ProbabilisticClassifier (+ ProbabilisticClassificationModel)
* Regressor (+ RegressionModel)
* Predictor (+ PredictionModel)
* *For all of these*:
 * There is no strongly typed training-time API.
 * There is a strongly typed test-time (prediction) API which helps developers implement new algorithms.

Concrete classes: learning algorithms
* LinearRegression
* LogisticRegression (updated to use new abstract classes)
 * Also, removed "score" in favor of "probability" output column.  Changed BinaryClassificationEvaluator to match. (SPARK-5031)

Other updates:
* params.scala: Changed Params.set/get to be protected instead of private[ml]
 * This was needed for the example of defining a class from outside of the MLlib namespace.
* VectorUDT: Will later change from private[spark] to public.
 * This is needed for outside users to write their own validateAndTransformSchema() methods using vectors.
 * Also, added equals() method.f
* SPARK-4942 : ML Transformers should allow output cols to be turned on,off
 * Update validateAndTransformSchema
 * Update transform
* (Updated examples, test suites according to other changes)

New examples:
* DeveloperApiExample.scala (example of defining algorithm from outside of the MLlib namespace)
 * Added Java version too

Test Suites:
* LinearRegressionSuite
* LogisticRegressionSuite
* + Java versions of above suites

CC: mengxr  etrain  shivaram

Author: Joseph K. Bradley <joseph@databricks.com>

Closes apache#3637 from jkbradley/ml-api-part1 and squashes the following commits:

405bfb8 [Joseph K. Bradley] Last edits based on code review.  Small cleanups
fec348a [Joseph K. Bradley] Added JavaDeveloperApiExample.java and fixed other issues: Made developer API private[spark] for now. Added constructors Java can understand to specialized Param types.
8316d5e [Joseph K. Bradley] fixes after rebasing on master
fc62406 [Joseph K. Bradley] fixed test suites after last commit
bcb9549 [Joseph K. Bradley] Fixed issues after rebasing from master (after move from SchemaRDD to DataFrame)
9872424 [Joseph K. Bradley] fixed JavaLinearRegressionSuite.java Java sql api
f542997 [Joseph K. Bradley] Added MIMA excludes for VectorUDT (now public), and added DeveloperApi annotation to it
216d199 [Joseph K. Bradley] fixed after sql datatypes PR got merged
f549e34 [Joseph K. Bradley] Updates based on code review.  Major ones are: * Created weakly typed Predictor.train() method which is called by fit() so that developers do not have to call schema validation or copy parameters. * Made Predictor.featuresDataType have a default value of VectorUDT.   * NOTE: This could be dangerous since the FeaturesType type parameter cannot have a default value.
343e7bd [Joseph K. Bradley] added blanket mima exclude for ml package
82f340b [Joseph K. Bradley] Fixed bug in LogisticRegression (introduced in this PR).  Fixed Java suites
0a16da9 [Joseph K. Bradley] Fixed Linear/Logistic RegressionSuites
c3c8da5 [Joseph K. Bradley] small cleanup
934f97b [Joseph K. Bradley] Fixed bugs from previous commit.
1c61723 [Joseph K. Bradley] * Made ProbabilisticClassificationModel into a subclass of ClassificationModel.  Also introduced ProbabilisticClassifier.  * This was to support output column “probabilityCol” in transform().
4e2f711 [Joseph K. Bradley] rat fix
bc654e1 [Joseph K. Bradley] Added spark.ml LinearRegressionSuite
8d13233 [Joseph K. Bradley] Added methods: * Classifier: batch predictRaw() * Predictor: train() without paramMap ProbabilisticClassificationModel.predictProbabilities() * Java versions of all above batch methods + others
1680905 [Joseph K. Bradley] Added JavaLabeledPointSuite.java for spark.ml, and added constructor to LabeledPoint which defaults weight to 1.0
adbe50a [Joseph K. Bradley] * fixed LinearRegression train() to use embedded paramMap * added Predictor.predict(RDD[Vector]) method * updated Linear/LogisticRegressionSuites
58802e3 [Joseph K. Bradley] added train() to Predictor subclasses which does not take a ParamMap.
57d54ab [Joseph K. Bradley] * Changed semantics of Predictor.train() to merge the given paramMap with the embedded paramMap. * remove threshold_internal from logreg * Added Predictor.copy() * Extended LogisticRegressionSuite
e433872 [Joseph K. Bradley] Updated docs.  Added LabeledPointSuite to spark.ml
54b7b31 [Joseph K. Bradley] Fixed issue with logreg threshold being set correctly
0617d61 [Joseph K. Bradley] Fixed bug from last commit (sorting paramMap by parameter names in toString).  Fixed bug in persisting logreg data.  Added threshold_internal to logreg for faster test-time prediction (avoiding map lookup).
601e792 [Joseph K. Bradley] Modified ParamMap to sort parameters in toString.  Cleaned up classes in class hierarchy, before implementing tests and examples.
d705e87 [Joseph K. Bradley] Added LinearRegression and Regressor back from ml-api branch
52f4fde [Joseph K. Bradley] removing everything except for simple class hierarchy for classification
d35bb5d [Joseph K. Bradley] fixed compilation issues, but have not added tests yet
bfade12 [Joseph K. Bradley] Added lots of classes for new ML API:
  • Loading branch information
jkbradley authored and mengxr committed Feb 6, 2015
1 parent 6b88825 commit dc0c449
Show file tree
Hide file tree
Showing 26 changed files with 1,753 additions and 156 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -116,10 +116,12 @@ public static void main(String[] args) {

// Make predictions on test documents. cvModel uses the best model found (lrModel).
cvModel.transform(test).registerTempTable("prediction");
DataFrame predictions = jsql.sql("SELECT id, text, score, prediction FROM prediction");
DataFrame predictions = jsql.sql("SELECT id, text, probability, prediction FROM prediction");
for (Row r: predictions.collect()) {
System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> score=" + r.get(2)
System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob=" + r.get(2)
+ ", prediction=" + r.get(3));
}

jsc.stop();
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,217 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.ml;

import java.util.List;

import com.google.common.collect.Lists;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.ml.classification.Classifier;
import org.apache.spark.ml.classification.ClassificationModel;
import org.apache.spark.ml.param.IntParam;
import org.apache.spark.ml.param.ParamMap;
import org.apache.spark.ml.param.Params;
import org.apache.spark.ml.param.Params$;
import org.apache.spark.mllib.linalg.BLAS;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;


/**
* A simple example demonstrating how to write your own learning algorithm using Estimator,
* Transformer, and other abstractions.
* This mimics {@link org.apache.spark.ml.classification.LogisticRegression}.
*
* Run with
* <pre>
* bin/run-example ml.JavaDeveloperApiExample
* </pre>
*/
public class JavaDeveloperApiExample {

public static void main(String[] args) throws Exception {
SparkConf conf = new SparkConf().setAppName("JavaDeveloperApiExample");
JavaSparkContext jsc = new JavaSparkContext(conf);
SQLContext jsql = new SQLContext(jsc);

// Prepare training data.
List<LabeledPoint> localTraining = Lists.newArrayList(
new LabeledPoint(1.0, Vectors.dense(0.0, 1.1, 0.1)),
new LabeledPoint(0.0, Vectors.dense(2.0, 1.0, -1.0)),
new LabeledPoint(0.0, Vectors.dense(2.0, 1.3, 1.0)),
new LabeledPoint(1.0, Vectors.dense(0.0, 1.2, -0.5)));
DataFrame training = jsql.applySchema(jsc.parallelize(localTraining), LabeledPoint.class);

// Create a LogisticRegression instance. This instance is an Estimator.
MyJavaLogisticRegression lr = new MyJavaLogisticRegression();
// Print out the parameters, documentation, and any default values.
System.out.println("MyJavaLogisticRegression parameters:\n" + lr.explainParams() + "\n");

// We may set parameters using setter methods.
lr.setMaxIter(10);

// Learn a LogisticRegression model. This uses the parameters stored in lr.
MyJavaLogisticRegressionModel model = lr.fit(training);

// Prepare test data.
List<LabeledPoint> localTest = Lists.newArrayList(
new LabeledPoint(1.0, Vectors.dense(-1.0, 1.5, 1.3)),
new LabeledPoint(0.0, Vectors.dense(3.0, 2.0, -0.1)),
new LabeledPoint(1.0, Vectors.dense(0.0, 2.2, -1.5)));
DataFrame test = jsql.applySchema(jsc.parallelize(localTest), LabeledPoint.class);

// Make predictions on test documents. cvModel uses the best model found (lrModel).
DataFrame results = model.transform(test);
double sumPredictions = 0;
for (Row r : results.select("features", "label", "prediction").collect()) {
sumPredictions += r.getDouble(2);
}
if (sumPredictions != 0.0) {
throw new Exception("MyJavaLogisticRegression predicted something other than 0," +
" even though all weights are 0!");
}

jsc.stop();
}
}

/**
* Example of defining a type of {@link Classifier}.
*
* NOTE: This is private since it is an example. In practice, you may not want it to be private.
*/
class MyJavaLogisticRegression
extends Classifier<Vector, MyJavaLogisticRegression, MyJavaLogisticRegressionModel>
implements Params {

/**
* Param for max number of iterations
* <p/>
* NOTE: The usual way to add a parameter to a model or algorithm is to include:
* - val myParamName: ParamType
* - def getMyParamName
* - def setMyParamName
*/
IntParam maxIter = new IntParam(this, "maxIter", "max number of iterations");

int getMaxIter() { return (int)get(maxIter); }

public MyJavaLogisticRegression() {
setMaxIter(100);
}

// The parameter setter is in this class since it should return type MyJavaLogisticRegression.
MyJavaLogisticRegression setMaxIter(int value) {
return (MyJavaLogisticRegression)set(maxIter, value);
}

// This method is used by fit().
// In Java, we have to make it public since Java does not understand Scala's protected modifier.
public MyJavaLogisticRegressionModel train(DataFrame dataset, ParamMap paramMap) {
// Extract columns from data using helper method.
JavaRDD<LabeledPoint> oldDataset = extractLabeledPoints(dataset, paramMap).toJavaRDD();

// Do learning to estimate the weight vector.
int numFeatures = oldDataset.take(1).get(0).features().size();
Vector weights = Vectors.zeros(numFeatures); // Learning would happen here.

// Create a model, and return it.
return new MyJavaLogisticRegressionModel(this, paramMap, weights);
}
}

/**
* Example of defining a type of {@link ClassificationModel}.
*
* NOTE: This is private since it is an example. In practice, you may not want it to be private.
*/
class MyJavaLogisticRegressionModel
extends ClassificationModel<Vector, MyJavaLogisticRegressionModel> implements Params {

private MyJavaLogisticRegression parent_;
public MyJavaLogisticRegression parent() { return parent_; }

private ParamMap fittingParamMap_;
public ParamMap fittingParamMap() { return fittingParamMap_; }

private Vector weights_;
public Vector weights() { return weights_; }

public MyJavaLogisticRegressionModel(
MyJavaLogisticRegression parent_,
ParamMap fittingParamMap_,
Vector weights_) {
this.parent_ = parent_;
this.fittingParamMap_ = fittingParamMap_;
this.weights_ = weights_;
}

// This uses the default implementation of transform(), which reads column "features" and outputs
// columns "prediction" and "rawPrediction."

// This uses the default implementation of predict(), which chooses the label corresponding to
// the maximum value returned by [[predictRaw()]].

/**
* Raw prediction for each possible label.
* The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives
* a measure of confidence in each possible label (where larger = more confident).
* This internal method is used to implement [[transform()]] and output [[rawPredictionCol]].
*
* @return vector where element i is the raw prediction for label i.
* This raw prediction may be any real number, where a larger value indicates greater
* confidence for that label.
*
* In Java, we have to make this method public since Java does not understand Scala's protected
* modifier.
*/
public Vector predictRaw(Vector features) {
double margin = BLAS.dot(features, weights_);
// There are 2 classes (binary classification), so we return a length-2 vector,
// where index i corresponds to class i (i = 0, 1).
return Vectors.dense(-margin, margin);
}

/**
* Number of classes the label can take. 2 indicates binary classification.
*/
public int numClasses() { return 2; }

/**
* Create a copy of the model.
* The copy is shallow, except for the embedded paramMap, which gets a deep copy.
* <p/>
* This is used for the defaul implementation of [[transform()]].
*
* In Java, we have to make this method public since Java does not understand Scala's protected
* modifier.
*/
public MyJavaLogisticRegressionModel copy() {
MyJavaLogisticRegressionModel m =
new MyJavaLogisticRegressionModel(parent_, fittingParamMap_, weights_);
Params$.MODULE$.inheritValues(this.paramMap(), this, m);
return m;
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ public static void main(String[] args) {

// One can also combine ParamMaps.
ParamMap paramMap2 = new ParamMap();
paramMap2.put(lr.scoreCol().w("probability")); // Change output column name
paramMap2.put(lr.probabilityCol().w("myProbability")); // Change output column name
ParamMap paramMapCombined = paramMap.$plus$plus(paramMap2);

// Now learn a new model using the paramMapCombined parameters.
Expand All @@ -98,14 +98,16 @@ public static void main(String[] args) {

// Make predictions on test documents using the Transformer.transform() method.
// LogisticRegression.transform will only use the 'features' column.
// Note that model2.transform() outputs a 'probability' column instead of the usual 'score'
// column since we renamed the lr.scoreCol parameter previously.
// Note that model2.transform() outputs a 'myProbability' column instead of the usual
// 'probability' column since we renamed the lr.probabilityCol parameter previously.
model2.transform(test).registerTempTable("results");
DataFrame results =
jsql.sql("SELECT features, label, probability, prediction FROM results");
jsql.sql("SELECT features, label, myProbability, prediction FROM results");
for (Row r: results.collect()) {
System.out.println("(" + r.get(0) + ", " + r.get(1) + ") -> prob=" + r.get(2)
+ ", prediction=" + r.get(3));
}

jsc.stop();
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -85,8 +85,10 @@ public static void main(String[] args) {
model.transform(test).registerTempTable("prediction");
DataFrame predictions = jsql.sql("SELECT id, text, score, prediction FROM prediction");
for (Row r: predictions.collect()) {
System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> score=" + r.get(2)
System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob=" + r.get(2)
+ ", prediction=" + r.get(3));
}

jsc.stop();
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator}
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.sql.{Row, SQLContext}

/**
Expand Down Expand Up @@ -100,10 +101,10 @@ object CrossValidatorExample {

// Make predictions on test documents. cvModel uses the best model found (lrModel).
cvModel.transform(test)
.select("id", "text", "score", "prediction")
.select("id", "text", "probability", "prediction")
.collect()
.foreach { case Row(id: Long, text: String, score: Double, prediction: Double) =>
println("(" + id + ", " + text + ") --> score=" + score + ", prediction=" + prediction)
.foreach { case Row(id: Long, text: String, prob: Vector, prediction: Double) =>
println(s"($id, $text) --> prob=$prob, prediction=$prediction")
}

sc.stop()
Expand Down
Loading

0 comments on commit dc0c449

Please sign in to comment.