Skip to content

Commit

Permalink
Add SNAPER HMC from TFP to mcmc algorithms.
Browse files Browse the repository at this point in the history
See https://arxiv.org/abs/2110.11576 for details.

PiperOrigin-RevId: 606680099
  • Loading branch information
ColCarroll authored and The bayeux Authors committed Feb 13, 2024
1 parent a77a136 commit bdf2973
Show file tree
Hide file tree
Showing 3 changed files with 135 additions and 1 deletion.
116 changes: 116 additions & 0 deletions bayeux/_src/mcmc/tfp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
# Copyright 2024 The bayeux Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Copyright 2024 The bayeux Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""NumPyro specific code."""

import arviz as az
from bayeux._src import shared
import jax
import numpy as np
import tensorflow_probability.substrates.jax as tfp


class SnaperHMC(shared.Base):
"""Implements SNAPER HMC [1] with step size adaptation.
[1]: Sountsov, P. & Hoffman, M. (2021). Focusing on Difficult Directions for
Learning HMC Trajectory Lengths. <https://arxiv.org/abs/2110.11576>
"""
name = "tfp_snaper_hmc"

def get_kwargs(self, **kwargs):
kwargs_with_defaults = {
"num_results": 1_000,
"num_chains": 8,
} | kwargs
snaper = tfp.experimental.mcmc.sample_snaper_hmc
snaper_kwargs, snaper_required = shared.get_default_signature(snaper)
snaper_kwargs.update({k: kwargs_with_defaults[k] for k in snaper_required
if k in kwargs_with_defaults})
snaper_required.remove("model")
# Initial state is handled internally
snaper_kwargs.pop("init_state")
# Seed set later
snaper_kwargs.pop("seed")

snaper_required = snaper_required - snaper_kwargs.keys()

if snaper_required:
raise ValueError(f"Unexpected required arguments: "
f"{','.join(snaper_required)}. Probably file a bug, but "
"you can try to manually supply them as keywords.")
snaper_kwargs.update({k: kwargs_with_defaults[k] for k in snaper_kwargs
if k in kwargs_with_defaults})
return {
snaper: snaper_kwargs,
"extra_parameters": {
"return_pytree": kwargs.get("return_pytree", False)
},
}

def __call__(self, seed, **kwargs):
snaper = tfp.experimental.mcmc.sample_snaper_hmc
init_key, sample_key = jax.random.split(seed)
kwargs = self.get_kwargs(**kwargs)
initial_state = self.get_initial_state(
init_key, num_chains=kwargs[snaper]["num_chains"])

vmapped_constrained_log_prob = jax.vmap(self.constrained_log_density())

def tlp(*args, **kwargs):
if args:
return vmapped_constrained_log_prob(args)
else:
return vmapped_constrained_log_prob(kwargs)

(draws, trace), *_ = snaper(
model=tlp, init_state=initial_state, seed=sample_key, **kwargs[snaper]
)
draws = self.transform_fn(draws)
if kwargs["extra_parameters"]["return_pytree"]:
return draws

if hasattr(draws, "_asdict"):
draws = draws._asdict()
elif not isinstance(draws, dict):
draws = {"var0": draws}

draws = {x: np.swapaxes(v, 0, 1) for x, v in draws.items()}
return az.from_dict(posterior=draws, sample_stats=_tfp_stats_to_dict(trace))


def _tfp_stats_to_dict(stats):
new_stats = {}
for k, v in stats.items():
if k == "variance_scaling":
continue
if np.ndim(v) > 1:
new_stats[k] = np.swapaxes(v, 0, 1)
else:
new_stats[k] = v
return new_stats
6 changes: 5 additions & 1 deletion bayeux/mcmc/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,9 +15,13 @@
"""Imports from submodules."""
# pylint: disable=g-importing-member
# pylint: disable=g-import-not-at-top
# pylint: disable=g-bad-import-order
import importlib

__all__ = []
# TFP-on-JAX always installed
from bayeux._src.mcmc.tfp import SnaperHMC as SNAPER_HMC_TFP
__all__ = ["SNAPER_HMC_TFP"]

if importlib.util.find_spec("blackjax") is not None:
from bayeux._src.mcmc.blackjax import CheesHMC as CheesHMCblackjax
from bayeux._src.mcmc.blackjax import HMC as HMCblackjax
Expand Down
14 changes: 14 additions & 0 deletions bayeux/tests/mcmc_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,20 @@ def test_return_pytree_numpyro():
assert pytree["x"]["y"].shape == (4, 10)


def test_return_pytree_tfp():
model = bx.Model(log_density=lambda pt: -pt["x"]["y"]**2,
test_point={"x": {"y": jnp.array(1.)}})
seed = jax.random.PRNGKey(0)
pytree = model.mcmc.tfp_snaper_hmc(
seed=seed,
return_pytree=True,
num_chains=4,
num_results=10,
num_burnin_steps=10,
)
assert pytree["x"]["y"].shape == (10, 4)


@pytest.mark.parametrize("method", METHODS)
def test_samplers(method):
# flowMC samplers are broken for 0 or 1 dimensions, so just test
Expand Down

0 comments on commit bdf2973

Please sign in to comment.