Skip to content
This repository has been archived by the owner on Dec 2, 2024. It is now read-only.
/ grimjack Public archive

🤺 Argument retrieval using axiomatic re-ranking and query reformulation.

License

Notifications You must be signed in to change notification settings

janheinrichmerker/grimjack

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CI Code coverage Issues Commit activity License

🤺 grimjack

Argumentative passage search engine, named after the fencer Grimjack.

Participation in the Touché 2022 shared task 2, as part of the Advanced Information Retrieval lecture at Martin Luther University Halle-Wittenberg.

Usage

The following sections describe how to use the Grimjack search engine using Pipenv. See the Docker section for instructions on how to use Grimjack inside a Docker container.

Installation

First, install Python 3.9 or higher and then clone this repository. From inside the repository directory, create a virtual environment and activate it:

python3.9 -m venv venv/
source venv/bin/activate

Then, install the test dependencies:

pip install -e .

Run the search pipeline

To test the search pipeline, run the grimjack CLI like this:

python -m grimjack search "Which is better, a laptop or a desktop?"

Generate a run file for all topics

To search all topics and generate a run file (top-5 per query), run the grimjack CLI like this:

python -m grimjack --num-hits 5 run data/run.txt

This will save a run file at data/run.txt with the format described in the shared task description.

Evaluate all topics

To evaluate the search pipeline for all topics, run the grimjack CLI like this:

python -m grimjack evaluate

This will print the evaluation metric (default: nDCG@10) to the console.

Options

The search pipeline can be configured with the options listed in the help command. The help command also lists all subcommands.

python -m grimjack --help

Each subcommand's extra options can be listed, e.g.:

python -m grimjack search --help

Examples / Touché 2022 Runs

The following examples correspond to the runs we submit to the Touché 2022 shared task.

1. Baseline

Retrieve 20 documents by Dirichlet query likelihood for the unmodified query, tag arguments using the IBM fastText TARGER model, tag argument quality using the IBM Debater API, tag argument stance by comparing sentiments for each object using the IBM Debater API, treating stance as neutral if under a threshold of 0.125.

python -m grimjack \
  --retrieval-model query-likelihood-dirichlet \
  --targer-model tag-ibm-fasttext \
  --quality-tagger debater \
  --stance-tagger debater-sentiment \
  --stance-threshold 0.125 \
  --num-hits 100 \
  run \
  data/runs/grimjack-baseline.txt

2. Argumentative Axioms

Rerank top-10 documents from the baseline result based on preferences from argumentative axioms.

python -m grimjack \
  --retrieval-model query-likelihood-dirichlet \
  --targer-model tag-ibm-fasttext \
  --quality-tagger debater \
  --stance-tagger debater-sentiment \
  --stance-threshold 0.125 \
  --num-hits 100 \
  --rerank-hits 10 \
  --reranker axiomatic \
  --argumentative-axioms \
  run \
  data/runs/grimjack-argumentative-axioms.txt

3. Fair Reranking after Argumentative Axioms

With the argumentative axiomatic ranking, move subjective documents (non-neutral stance) to the top, and then ensure that document's stances alternate.

python -m grimjack \
  --retrieval-model query-likelihood-dirichlet \
  --targer-model tag-ibm-fasttext \
  --quality-tagger debater \
  --stance-tagger debater-sentiment \
  --stance-threshold 0.125 \
  --num-hits 100 \
  --rerank-hits 10 \
  --reranker axiomatic \
  --argumentative-axioms \
  --reranker subjective-first \
  --reranker alternating-stance \
  run \
  data/runs/grimjack-fair-reranking-argumentative-axioms.txt

4. All you need is T0

Expand the query by extracting queries from the description and narrative using T0, expand the query with T0 synonyms for each comparative object, then retrieve like with the baseline, tag argument quality using T0, tag argument stance using T0.

python -m grimjack \
  --query-expander t0pp-description-narrative \
  --query-expander t0pp-comparative-synonyms \
  --retrieval-model query-likelihood-dirichlet \
  --targer-model tag-ibm-fasttext \
  --quality-tagger t0pp \
  --stance-tagger t0pp \
  --stance-threshold 0.125 \
  --num-hits 100 \
  run \
  data/runs/grimjack-all-you-need-is-t0.txt

5. Argumentative Fair Reranking with T0

Expand the query by extracting queries from the description and narrative using T0, expand the query with T0 and fastText synonyms for each comparative object, then retrieve like with the baseline, rerank top-10 documents from the baseline result based on preferences from argumentative axioms, move subjective documents (non-neutral stance) to the top, and then ensure that document's stances alternate.

python -m grimjack \
  --query-expander t0pp-description-narrative \
  --query-expander t0pp-synonyms \
  --query-expander fast-text-wiki-news-synonyms \
  --retrieval-model query-likelihood-dirichlet \
  --targer-model tag-ibm-fasttext \
  --quality-tagger debater \
  --stance-tagger debater-sentiment \
  --stance-threshold 0.125 \
  --num-hits 100 \
  --rerank-hits 10 \
  --reranker axiomatic \
  --argumentative-axioms \
  --reranker subjective-first \
  --reranker alternating-stance \
  run \
  data/runs/grimjack-fair-argumentative-reranking-with-t0.txt

Testing

After installing all dependencies, you can run all unit tests:

flake8 grimjack
pylint -E grimjack
pytest grimjack

Docker

Grimjack can also be used as a Docker container:

docker image build . -t grimjack
docker container run grimjack --help

We recommend to bind mount the data directory to the container, for example:

docker container run -v "$(pwd)"/data:/workspace/data grimjack run data/run.txt

License

This repository is licensed under the MIT License.

Ideas

  • Fairness
  • Submit to ArgMining workshop

About

🤺 Argument retrieval using axiomatic re-ranking and query reformulation.

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

Contributors 4

  •  
  •  
  •  
  •  

Languages