Skip to content
This repository has been archived by the owner on Apr 14, 2022. It is now read-only.
/ hdf5-pydata-munich Public archive

Jupyer notebook and snippets for the PyData Munich HDF5 tutorial

License

Notifications You must be signed in to change notification settings

jackdbd/hdf5-pydata-munich

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

hdf5-pydata-munich

Introduction to HDF5 in Python.

An image showing a subset of pickup locations of New York City yellow taxis during January 2015

If you are just curious and want to have a look at the notebook without installing anything, go to http://nbviewer.jupyter.org/ and type jackdbd/hdf5-pydata-munich in the search bar.

Installation

Create a Python 3.5 virtual environment. It seems that at this moment Bokeh has some issues with Python 3.6.

pip install -r requirements.txt

Usage

# start the notebook server
jupyter notebook  --port 8085
# open your browser and go to:
# http://localhost:8085/notebooks/hdf5_in_python.ipynb

Instructions to build the HDF5 file used in the notebook

  1. Visit the NYC Taxi & Limousine Commission website and download the CSV files from the 2015 Yellow taxi dataset (TLC Trip Record Data). You can also download just one month (e.g. January) to try these snippets out.

  2. Place the csv files here: hdf5-pydata-munich/data/nyctaxi/2015/<your-file-here>.csv

  3. Create the HDF5 file which contains all the tables (1 table per month) with:

cd snippets
python create_taxi_table.py

This creates the HDF5 file NYC-yellow-taxis-10k.h5.

  1. store a sample of each CSV file in the tables with:
python append_to_taxi_table.py

This reads a chunk of 10000 rows from all the CSV files that you downloaded, then stores the results in the HDF5 file NYC-yellow-taxis-10k.h5. This is just a small sample of the original dataset. If you want to store the entire dataset (~12 million rows per month), just remove the break statement in append_to_taxi_table.py.

To view the structure of the tables you can use a HDF5 viewer like HDFView, HDF Compass or ViTables.

Create a huge HDF5 file

If you want to play around with a huge HDF5 file, I created a snippet that generates some synthetic data. You can run it with:

python create_huge_hdf5_file.py

This takes roughly 5 minutes to run and creates the HDF5 file pytables-clinical-study.h5 which should be around 5GB in size. You can tweak the code just a little bit to create even bigger files.

About

Jupyer notebook and snippets for the PyData Munich HDF5 tutorial

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published