Skip to content

jabae/detectEM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

69 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

detectEM (Gotta detect'em all)

Deep learning to detect particular features on EM images.

  1. Defect (fold/crack) detection
  • Fold

  • Crack

  1. Resin detection
  2. Film detection
  3. Mitochondria detection

Install

Create virtual environment

conda create -n cmito python=3.8

Install Cmito

git clone https://github.com/jabae/Cmito.git
cd Cmito
pip install -r requirements.txt

Train

python train.py --exp_dir /experiment_directory/ 
--train_image /train_image.h5 --train_label /train_mask.h5
--val_image /val_image.h5 --val_label /val_mask.h5 --chkpt_num 0

Inference

Local inference

python inference.py --exp_dir /experiment_directory/ --chkpt_num 150000 
--input_file test_image.h5 --output_file pred_mask.h5

Large-scale inference

Large-scale inference can be done using the SEAMLeSS module.
Use alex-emdetector branch.

  • Single-label inference
python3 run_emdetector.py --model_path ../models/Zetta_RFNet0120/   
--src_path gs://zetta_aibs_human_unaligned/mip3_stack --dst_path gs://zetta_aibs_human_unaligned/masks/resin/resin_prelim 
--bbox_start 0 0 5100 --bbox_stop 1048576 1048576 5102 
--bbox_mip 0 --max_mip 8 --mip 6 --chunk_size 2048 2048 --overlap 32 32
  • Multi-label inference
python3 run_multi_emdetector.py --model_path ../models/Zetta_RFNet0120/   
--src_path gs://zetta_aibs_human_unaligned/mip3_stack --dst1_path gs://zetta_aibs_human_unaligned/masks/resin/resin_prelim 
--dst2_path gs://zetta_aibs_human_unaligned/masks/film/film_prelim --bbox_start 0 0 5100 --bbox_stop 1048576 1048576 5102 
--bbox_mip 0 --max_mip 8 --mip 6 --chunk_size 2048 2048 --overlap 32 32

References

Parts of the codes have been adopted from DeepEM.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages