Skip to content

A simple Panel-based dashboard visualizing geotagged tweets with hvplot and Datashader.

License

Notifications You must be signed in to change notification settings

ivandorte/panel-geodashboard-twitter

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🐦 Twitter dashboard

License: CC BY-SA 4.0

A Panel-based dashboard visualizing geotagged tweets with hvplot, Datashader and Echarts.

img

The dashboard includes:

  • An heatmap showing the number of tweets;

  • A bar plot showing the 5 most common languages within the current map extent;

  • A wordcloud SVG showing the 10 most popular hashtags within the current map extent;

  • A pie chart showing the overall sentiment (positive/negative) within the current map extent;

  • Two line charts showing the number of tweets and unique users on a daily basis within the current map extent;

Deployed on

Hugging Face: https://huggingface.co/spaces/ivn888/Twitter-dashboard

Twitter data (link)

This dataset contains over 200k geotagged tweets in parquet format:

  • Coverage: Historic Centre of Rome, Italy;

  • EPSG: 3857;

  • Year: 2018;

  • Language: Multi;

  • Source: This dataset was scraped by myself with snscrape;

Column Description
tweet_date (index) Tweet creation date
user_id Unique identifier of the tweet author
user_location User location information
tweet_id Unique identifier of the tweet
tweet_text Tweet content
tweet_hashtags Comma separated list of the tweet hashtags
tweet_lang Tweet language
tweet_sentiment Sentiment Analysis (Multilingual model)
tweet_topic Topic Classification (English, single-label model)
x x-coordinate of the tweet
y y-coordinate of the tweet

How to run this app on your local system

  1. Git clone this repository:

git clone git@github.com:ivandorte/panel-geodashboard-twitter.git

cd panel-geodashboard-twitter

  1. Install the required Python packages:

python -m pip install -r requirements.txt

  1. Run the app

panel serve app.py --show

The dashboard will be available in your default web browser!!!

References

Authors

  • Ivan D'Ortenzio

Twitter LinkedIn

Releases

No releases published

Packages

No packages published

Languages