This repository is the official implementation of DiTASK: Multi-Task Fine-Tuning with Diffeomorphic Transformations.
The repository is built on top of MTLoRA and uses components from Swin-Transformer and Multi-Task-Learning-PyTorch.
Clone the repository:
git clone git@github.com:ipsitmantri/dynamic-graph-activation.git
Create a virtual environment in python (recommended to use Python 3.10):
conda create -n ditask --file environment.yml
Activate the virtual environment:
conda activate ditask
Download the PASCAL-Context MTL dataset from here and extract it.
Download the Swin-Transformer weights pre-trained on ImageNet-22K from the official Swin repository.
torchrun --nproc_per_node=8 --nnodes=1 main.py --cfg configs/ditask/ditask_tiny_448_r64.yaml --pascal <path-to-PASCAL-Context root> --tasks semsge,human_parts,normals,sal --batch-size 64 --ckpt-freq 20 --epoch 300 --resume-backbone swin_tiny_patch4_window7_224_22k.pth
@inproceedings{mantri2025ditaskmultitaskfinetuningdiffeomorphic,
title={DiTASK: Multi-Task Fine-Tuning with Diffeomorphic Transformations},
author={Krishna Sri Ipsit Mantri and Carola-Bibiane Schönlieb and Bruno Ribeiro and Chaim Baskin and Moshe Eliasof},
year={2025},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
url={https://arxiv.org/abs/2502.06029}
}