Skip to content

DiTASK: Multi-Task Fine-Tuning with Diffeomorphic Transformations (CVPR 2025)

License

Notifications You must be signed in to change notification settings

ipsitmantri/DiTASK

Repository files navigation

DiTASK: Multi-Task Fine-Tuning with Diffeomorphic Transformations

This repository is the official implementation of DiTASK: Multi-Task Fine-Tuning with Diffeomorphic Transformations.

Setup

The repository is built on top of MTLoRA and uses components from Swin-Transformer and Multi-Task-Learning-PyTorch.

Clone the repository:

git clone git@github.com:ipsitmantri/dynamic-graph-activation.git

Create a virtual environment in python (recommended to use Python 3.10):

conda create -n ditask --file environment.yml

Activate the virtual environment:

conda activate ditask

Dataset

Download the PASCAL-Context MTL dataset from here and extract it.

Pre-trained Model Backbone

Download the Swin-Transformer weights pre-trained on ImageNet-22K from the official Swin repository.

Running DiTASK

torchrun --nproc_per_node=8 --nnodes=1 main.py --cfg configs/ditask/ditask_tiny_448_r64.yaml --pascal <path-to-PASCAL-Context root> --tasks semsge,human_parts,normals,sal --batch-size 64 --ckpt-freq 20 --epoch 300 --resume-backbone swin_tiny_patch4_window7_224_22k.pth

Cite Us

 @inproceedings{mantri2025ditaskmultitaskfinetuningdiffeomorphic,
  title={DiTASK: Multi-Task Fine-Tuning with Diffeomorphic Transformations}, 
  author={Krishna Sri Ipsit Mantri and Carola-Bibiane Schönlieb and Bruno Ribeiro and Chaim Baskin and Moshe Eliasof},
  year={2025},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  url={https://arxiv.org/abs/2502.06029}    
  }

About

DiTASK: Multi-Task Fine-Tuning with Diffeomorphic Transformations (CVPR 2025)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published