Skip to content

Commit

Permalink
Add spmv! to BLAS in stdlib/LinearAlgebra
Browse files Browse the repository at this point in the history
  • Loading branch information
iolaszlo committed Jan 19, 2020
1 parent 248bc46 commit e6828c8
Show file tree
Hide file tree
Showing 3 changed files with 130 additions and 0 deletions.
1 change: 1 addition & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ Standard library changes
* The BLAS submodule now supports the level-2 BLAS subroutine `hpmv!` ([#34211]).
* `normalize` now supports multidimensional arrays ([#34239])
* `lq` factorizations can now be used to compute the minimum-norm solution to under-determined systems ([#34350]).
* The BLAS submodule now supports the level-2 BLAS subroutine `spmv!` ([#34320]).

#### Markdown

Expand Down
85 changes: 85 additions & 0 deletions stdlib/LinearAlgebra/src/blas.jl
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ export
hpmv!,
sbmv!,
sbmv,
spmv!,
symv!,
symv,
trsv!,
Expand Down Expand Up @@ -964,6 +965,90 @@ Return the updated `y`.
"""
sbmv!

### spmv!, (SP) symmetric packed matrix-vector operation defined as y := alpha*A*x + beta*y.
for (fname, elty) in ((:dspmv_, :Float64),
(:sspmv_, :Float32))
@eval begin
# SUBROUTINE DSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
# Y <- ALPHA*AP*X + BETA*Y
# * .. Scalar Arguments ..
# DOUBLE PRECISION ALPHA,BETA
# INTEGER INCX,INCY,N
# CHARACTER UPLO
# * .. Array Arguments ..
# DOUBLE PRECISION A(N,N),X(N),Y(N)
function spmv!(uplo::AbstractChar,
n::Integer,
α::$elty,
AP::Union{Ptr{$elty}, AbstractArray{$elty}},
x::Union{Ptr{$elty}, AbstractArray{$elty}},
incx::Integer,
β::$elty,
y::Union{Ptr{$elty}, AbstractArray{$elty}},
incy::Integer)

ccall((@blasfunc($fname), libblas), Cvoid,
(Ref{UInt8}, # uplo,
Ref{BlasInt}, # n,
Ref{$elty}, # α,
Ptr{$elty}, # AP,
Ptr{$elty}, # x,
Ref{BlasInt}, # incx,
Ref{$elty}, # β,
Ptr{$elty}, # y, out
Ref{BlasInt}), # incy
uplo,
n,
α,
AP,
x,
incx,
β,
y,
incy)
end
end
end

function spmv!(uplo::AbstractChar,
α::Real, AP::Union{DenseArray{T}, AbstractVector{T}}, x::Union{DenseArray{T}, AbstractVector{T}},
β::Real, y::Union{DenseArray{T}, AbstractVector{T}}) where {T <: BlasReal}
require_one_based_indexing(AP, x, y)
N = length(x)
if N != length(y)
throw(DimensionMismatch("x has length $(N), but y has length $(length(y))"))
end
if length(AP) < Int64(N*(N+1)/2)
throw(DimensionMismatch("Packed symmetric matrix A has size smaller than length(x) = $(N)."))
end
GC.@preserve x y AP spmv!(uplo, N, convert(T, α), AP, pointer(x), stride(x, 1), convert(T, β), pointer(y), stride(y, 1))
y
end

"""
spmv!(uplo, α, AP, x, β, y)
Update vector `y` as `α*A*x + β*y`, where `A` is a symmetric matrix provided
in packed format `AP`.
With `uplo = 'U'`, the array AP must contain the upper triangular part of the
symmetric matrix packed sequentially, column by column, so that `AP[1]`
contains `A[1, 1]`, `AP[2]` and `AP[3]` contain `A[1, 2]` and `A[2, 2]`
respectively, and so on.
With `uplo = 'L'`, the array AP must contain the lower triangular part of the
symmetric matrix packed sequentially, column by column, so that `AP[1]`
contains `A[1, 1]`, `AP[2]` and `AP[3]` contain `A[2, 1]` and `A[3, 1]`
respectively, and so on.
The scalar inputs `α` and `β` must be real.
The array inputs `x`, `y` and `AP` must all be of `Float32` or `Float64` type.
Return the updated `y`.
"""
spmv!

### hbmv, (HB) Hermitian banded matrix-vector multiplication
for (fname, elty) in ((:zhbmv_,:ComplexF64),
(:chbmv_,:ComplexF32))
Expand Down
44 changes: 44 additions & 0 deletions stdlib/LinearAlgebra/test/blas.jl
Original file line number Diff line number Diff line change
Expand Up @@ -241,6 +241,50 @@ Random.seed!(100)
end
end

# spmv!
if elty in (Float32, Float64)
@testset "spmv!" begin
# Both matrix dimensions n coincide, as we have symmetric matrices.
# Define the inputs and outputs of spmv!, y = α*A*x+β*y
α = rand(elty)
M = rand(elty, n, n)
AL = Symmetric(M, :L)
AU = Symmetric(M, :U)
x = rand(elty, n)
β = rand(elty)
y = rand(elty, n)

y_result_julia_lower = α*AL*x+β*y

# Create lower triangular packing of AL
AP = typeof(M[1,1])[]
for j in 1:n
for i in j:n
push!(AP, AL[i,j])
end
end

y_result_blas_lower = copy(y)
BLAS.spmv!('L', α, AP, x, β, y_result_blas_lower)
@test y_result_julia_lowery_result_blas_lower


y_result_julia_upper = α*AU*x+β*y

# Create upper triangular packing of AU
AP = typeof(M[1,1])[]
for j in 1:n
for i in 1:j
push!(AP, AU[i,j])
end
end

y_result_blas_upper = copy(y)
BLAS.spmv!('U', α, AP, x, β, y_result_blas_upper)
@test y_result_julia_uppery_result_blas_upper
end
end

#trsm
A = triu(rand(elty,n,n))
B = rand(elty,(n,n))
Expand Down

0 comments on commit e6828c8

Please sign in to comment.