Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add aten::huber_loss/backward and their variants #562

Merged
merged 3 commits into from
Jul 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 61 additions & 2 deletions src/ATen/native/xpu/Loss.cpp
Original file line number Diff line number Diff line change
@@ -1,14 +1,24 @@
#include <ATen/ATen.h>
#include <ATen/core/Reduction.h>
#include <ATen/core/Tensor.h>
#include <ATen/xpu/XPUNativeFunctions.h>

#include <ATen/native/xpu/sycl/BinaryMiscOpsKernels.h>
#include <ATen/native/xpu/sycl/PointwiseOpsKernels.h>
#include <ATen/xpu/XPUNativeFunctions.h>
#include <comm/RegisterUtils.h>

namespace at {

static inline at::Tensor apply_loss_reduction(
const at::Tensor& unreduced,
int64_t reduction) {
if (reduction == at::Reduction::Mean) {
return unreduced.mean();
} else if (reduction == at::Reduction::Sum) {
return unreduced.sum();
}
return unreduced;
}

Tensor& XPUNativeFunctions::mse_loss_out(
const Tensor& input,
const Tensor& target,
Expand Down Expand Up @@ -69,4 +79,53 @@ Tensor& XPUNativeFunctions::mse_loss_backward_out(
return grad_input;
}

Tensor XPUNativeFunctions::huber_loss(
const Tensor& input,
const Tensor& target,
int64_t reduction,
double delta) {
TORCH_CHECK(
delta > 0, "huber_loss does not support non-positive values for delta.")
Tensor loss = at::empty_like(input);
auto iter = TensorIterator::borrowing_binary_op(loss, input, target);
native::xpu::huber_kernel(iter, delta);
return apply_loss_reduction(loss, reduction);
}

Tensor& XPUNativeFunctions::huber_loss_out(
const Tensor& input,
const Tensor& target,
int64_t reduction,
double delta,
Tensor& result) {
TORCH_CHECK(
delta > 0, "huber_loss does not support non-positive values for delta.")
auto iter = TensorIterator::borrowing_binary_op(result, input, target);
native::xpu::huber_kernel(iter, delta);
if (reduction != Reduction::None) {
auto reduced = apply_loss_reduction(result, reduction);
result.resize_({});
result.copy_(reduced);
}
return result;
}

Tensor& XPUNativeFunctions::huber_loss_backward_out(
const Tensor& grad_output,
const Tensor& input,
const Tensor& target,
int64_t reduction,
double delta,
Tensor& grad_input) {
auto norm = (reduction == Reduction::Mean) ? (1. / input.numel()) : 1.;
auto iter = at::TensorIteratorConfig()
.add_output(grad_input)
.add_const_input(input)
.add_const_input(target)
.add_const_input(grad_output)
.build();
native::xpu::huber_backward_kernel(iter, norm, delta);
return grad_input;
}

} // namespace at
2 changes: 0 additions & 2 deletions src/ATen/native/xpu/XPUFallback.template
Original file line number Diff line number Diff line change
Expand Up @@ -218,8 +218,6 @@ TORCH_LIBRARY_IMPL(aten, XPU, m) {
"hardshrink.out",
"heaviside.out",
"histc",
"huber_loss",
"huber_loss_backward.out",
"i0.out",
"igammac.out",
"igamma.out",
Expand Down
21 changes: 21 additions & 0 deletions src/ATen/native/xpu/sycl/BinaryMiscOpsKernels.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -23,4 +23,25 @@ void mse_kernel(TensorIteratorBase& iter) {
[&]() { gpu_kernel(iter, MSEFunctor<scalar_t>()); });
}

template <typename scalar_t>
struct HuberFunctor {
scalar_t operator()(scalar_t a, scalar_t b) const {
auto z = std::abs(a - b);
return z < delta_val_ ? scalar_t(0.5) * z * z
: delta_val_ * (z - scalar_t(0.5) * delta_val_);
}
HuberFunctor(scalar_t delta_val) : delta_val_(delta_val) {}

private:
scalar_t delta_val_;
};

void huber_kernel(TensorIterator& iter, double delta) {
AT_DISPATCH_FLOATING_TYPES_AND2(
kBFloat16, kHalf, iter.dtype(), "huber_xpu", [&iter, delta] {
scalar_t delta_val(delta);
gpu_kernel(iter, HuberFunctor<scalar_t>(delta_val));
});
}

} // namespace at::native::xpu
2 changes: 2 additions & 0 deletions src/ATen/native/xpu/sycl/BinaryMiscOpsKernels.h
Original file line number Diff line number Diff line change
Expand Up @@ -6,4 +6,6 @@ namespace at::native::xpu {

void mse_kernel(TensorIteratorBase& iter);

void huber_kernel(TensorIterator& iter, double delta);

} // namespace at::native::xpu
37 changes: 37 additions & 0 deletions src/ATen/native/xpu/sycl/PointwiseOpsKernels.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -125,4 +125,41 @@ void mse_backward_kernel(TensorIterator& iter, const Scalar& value) {
});
}

template <typename scalar_t>
struct HuberBackwardFunctor {
scalar_t operator()(scalar_t input, scalar_t target, scalar_t grad_output)
const {
const auto x = input - target;
if (x < -delta_val_) {
return -norm_val_ * grad_output * delta_val_;
} else if (x > delta_val_) {
return norm_val_ * grad_output * delta_val_;
} else {
return norm_val_ * x * grad_output;
}
}
HuberBackwardFunctor(scalar_t norm_val, scalar_t delta_val)
: norm_val_(norm_val), delta_val_(delta_val) {}

private:
scalar_t norm_val_;
scalar_t delta_val_;
};

void huber_backward_kernel(
TensorIterator& iter,
const Scalar& norm,
double delta) {
AT_DISPATCH_FLOATING_TYPES_AND2(
kBFloat16,
kHalf,
iter.dtype(),
"huber_backward_xpu",
[&iter, &norm, delta] {
auto norm_val = norm.to<scalar_t>();
scalar_t delta_val(delta);
gpu_kernel(iter, HuberBackwardFunctor<scalar_t>(norm_val, delta_val));
});
}

} // namespace at::native::xpu
5 changes: 5 additions & 0 deletions src/ATen/native/xpu/sycl/PointwiseOpsKernels.h
Original file line number Diff line number Diff line change
Expand Up @@ -10,4 +10,9 @@ void addcdiv_kernel(TensorIterator& iter, Scalar value);

void mse_backward_kernel(TensorIterator& iter, const Scalar& value);

void huber_backward_kernel(
TensorIterator& iter,
const Scalar& norm,
double delta);

} // namespace at::native::xpu
1 change: 1 addition & 0 deletions test/xpu/extended/run_test_with_skip.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,6 +107,7 @@
"test_compare_cpu_nn_functional_batch_norm_xpu_bfloat16",
"test_compare_cpu__batch_norm_with_update_xpu_bfloat16",
"test_compare_cpu__batch_norm_with_update_xpu_float16",
"test_compare_cpu_nn_functional_huber_loss_xpu_bfloat16",

# Not implemented operators, aten::upsample_linear1d, aten::upsample_bilinear2d,
# aten::upsample_trilinear3d
Expand Down
1 change: 1 addition & 0 deletions test/xpu/xpu_test_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,7 @@
"nn.functional.upsample_nearest",
# "nn.functional.nll_loss", # Lack of XPU implementation of aten::nll_loss2d_forward. Will retrieve the case, only if the op is implemented.
"nn.functional.mse_loss",
"nn.functional.huber_loss",
"sigmoid",
"sgn",
"nn.functional.embedding_bag",
Expand Down
3 changes: 3 additions & 0 deletions yaml/xpu_functions.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -408,6 +408,9 @@ supported:
- nll_loss_forward
- nll_loss_backward.grad_input
- nll_loss_backward
- huber_loss
- huber_loss.out
- huber_loss_backward.out
- batch_norm_stats
- batch_norm_elemt
- batch_norm_elemt.out
Expand Down