This repository has been archived by the owner on Oct 25, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 211
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[NeuralChat] support llama series model for llava finetuning. (#948)
- Loading branch information
1 parent
a09f92d
commit d753cb8
Showing
4 changed files
with
164 additions
and
17 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
113 changes: 113 additions & 0 deletions
113
intel_extension_for_transformers/transformers/modeling/llava_models/llava_llama.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
#!/usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
# | ||
# Copyright (c) 2022 Intel Corporation | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
from typing import List, Optional, Tuple, Union | ||
|
||
import torch | ||
import torch.nn as nn | ||
|
||
from transformers import AutoConfig, AutoModelForCausalLM, \ | ||
LlamaConfig, LlamaModel, LlamaForCausalLM | ||
|
||
from transformers.modeling_outputs import CausalLMOutputWithPast | ||
|
||
from .llava_arch import LlavaMetaModel, LlavaMetaForCausalLM | ||
|
||
|
||
class LlavaConfig(LlamaConfig): | ||
model_type = "llava" | ||
|
||
|
||
class LlavaLlamaModel(LlavaMetaModel, LlamaModel): | ||
config_class = LlavaConfig | ||
|
||
def __init__(self, config: LlamaConfig): | ||
super(LlavaLlamaModel, self).__init__(config) | ||
|
||
|
||
class LlavaLlamaForCausalLM(LlamaForCausalLM, LlavaMetaForCausalLM): | ||
config_class = LlavaConfig | ||
|
||
def __init__(self, config): | ||
super(LlavaLlamaForCausalLM, self).__init__(config) | ||
self.model = LlavaLlamaModel(config) | ||
self.pretraining_tp = config.pretraining_tp | ||
self.vocab_size = config.vocab_size | ||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | ||
|
||
# Initialize weights and apply final processing | ||
self.post_init() | ||
|
||
def get_model(self): | ||
return self.model | ||
|
||
def forward( | ||
self, | ||
input_ids: torch.LongTensor = None, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
position_ids: Optional[torch.LongTensor] = None, | ||
past_key_values: Optional[List[torch.FloatTensor]] = None, | ||
inputs_embeds: Optional[torch.FloatTensor] = None, | ||
labels: Optional[torch.LongTensor] = None, | ||
use_cache: Optional[bool] = None, | ||
output_attentions: Optional[bool] = None, | ||
output_hidden_states: Optional[bool] = None, | ||
images: Optional[torch.FloatTensor] = None, | ||
return_dict: Optional[bool] = None, | ||
) -> Union[Tuple, CausalLMOutputWithPast]: | ||
|
||
if inputs_embeds is None: | ||
( | ||
input_ids, | ||
position_ids, | ||
attention_mask, | ||
past_key_values, | ||
inputs_embeds, | ||
labels | ||
) = self.prepare_inputs_labels_for_multimodal( | ||
input_ids, | ||
position_ids, | ||
attention_mask, | ||
past_key_values, | ||
labels, | ||
images | ||
) | ||
|
||
# pylint: disable=E1101 | ||
return super().forward( | ||
input_ids=input_ids, | ||
attention_mask=attention_mask, | ||
position_ids=position_ids, | ||
past_key_values=past_key_values, | ||
inputs_embeds=inputs_embeds, | ||
labels=labels, | ||
use_cache=use_cache, | ||
output_attentions=output_attentions, | ||
output_hidden_states=output_hidden_states, | ||
return_dict=return_dict | ||
) | ||
|
||
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): | ||
images = kwargs.pop("images", None) | ||
# pylint: disable=E1101 | ||
_inputs = super().prepare_inputs_for_generation( | ||
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs | ||
) | ||
if images is not None: | ||
_inputs['images'] = images | ||
return _inputs |