Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Removal of internal df_explicit_na #1023

Merged
merged 10 commits into from
Aug 14, 2023
Merged

Conversation

Melkiades
Copy link
Contributor

Fixes #1019

@github-actions
Copy link
Contributor

github-actions bot commented Aug 4, 2023

badge

Code Coverage Summary

Filename                                   Stmts    Miss  Cover    Missing
---------------------------------------  -------  ------  -------  -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
R/abnormal_by_baseline.R                      63       0  100.00%
R/abnormal_by_marked.R                        53       5  90.57%   115-119
R/abnormal_by_worst_grade_worsen.R           114       3  97.37%   233-235
R/abnormal_by_worst_grade.R                   38       0  100.00%
R/abnormal.R                                  41       0  100.00%
R/analyze_variables.R                        220       2  99.09%   273, 499
R/analyze_vars_in_cols.R                     120      22  81.67%   164, 188-193, 206, 219-225, 276-282
R/combination_function.R                       9       0  100.00%
R/compare_variables.R                        139       5  96.40%   126-127, 137, 241, 259
R/control_incidence_rate.R                    20       8  60.00%   32-35, 38-41
R/control_logistic.R                           7       0  100.00%
R/control_step.R                              23       1  95.65%   58
R/control_survival.R                          15       0  100.00%
R/count_cumulative.R                          48       1  97.92%   63
R/count_missed_doses.R                        32       0  100.00%
R/count_occurrences_by_grade.R                85       6  92.94%   156-158, 161, 176-177
R/count_occurrences.R                         62       1  98.39%   92
R/count_patients_events_in_cols.R             67       1  98.51%   62
R/count_patients_with_event.R                 34       0  100.00%
R/count_patients_with_flags.R                 45       4  91.11%   71-72, 77-78
R/count_values.R                              25       0  100.00%
R/cox_regression_inter.R                     154       0  100.00%
R/cox_regression.R                           161       0  100.00%
R/coxph.R                                    167       7  95.81%   191-195, 239, 254, 262, 268-269
R/d_pkparam.R                                406       0  100.00%
R/decorate_grob.R                            169      40  76.33%   232-263, 323-325, 332, 353-390
R/desctools_binom_diff.R                     663      66  90.05%   52, 87-88, 128-129, 132, 211, 237-246, 285, 287, 307, 311, 315, 319, 375, 378, 381, 384, 445, 453, 465-466, 472-475, 483, 486, 495, 498, 546-547, 549-550, 552-553, 555-556, 626, 638-651, 656, 703, 716, 720
R/df_explicit_na.R                            30       0  100.00%
R/estimate_multinomial_rsp.R                  48       1  97.92%   60
R/estimate_proportion.R                      200      12  94.00%   75-82, 86, 91, 296, 463, 568
R/fit_rsp_step.R                              36       0  100.00%
R/fit_survival_step.R                         36       0  100.00%
R/formatting_functions.R                     115       2  98.26%   145, 155
R/g_forest.R                                 437      23  94.74%   197, 248-249, 316, 333-334, 339-340, 353, 369, 416, 447, 523, 532, 613-617, 627, 702, 705, 829
R/g_lineplot.R                               199      29  85.43%   160, 173, 201, 227-230, 307-314, 332-333, 339-349, 441, 449
R/g_step.R                                    68       1  98.53%   109
R/g_waterfall.R                               47       0  100.00%
R/h_adsl_adlb_merge_using_worst_flag.R        73       0  100.00%
R/h_biomarkers_subgroups.R                    40       0  100.00%
R/h_cox_regression.R                         110       0  100.00%
R/h_logistic_regression.R                    468       3  99.36%   206-207, 276
R/h_map_for_count_abnormal.R                  54       0  100.00%
R/h_pkparam_sort.R                            15       0  100.00%
R/h_response_biomarkers_subgroups.R           75       0  100.00%
R/h_response_subgroups.R                     171      12  92.98%   257-270
R/h_stack_by_baskets.R                        64       1  98.44%   89
R/h_step.R                                   180       0  100.00%
R/h_survival_biomarkers_subgroups.R           79       0  100.00%
R/h_survival_duration_subgroups.R            200      12  94.00%   259-271
R/incidence_rate.R                            94       7  92.55%   53-60
R/individual_patient_plot.R                  133       0  100.00%
R/kaplan_meier_plot.R                        646      64  90.09%   226-229, 269-304, 313-317, 517, 704-706, 714-716, 748-749, 921, 1110, 1427-1438
R/logistic_regression.R                      101       0  100.00%
R/missing_data.R                              21       3  85.71%   32, 66, 76
R/odds_ratio.R                               107       0  100.00%
R/prop_diff_test.R                            89       0  100.00%
R/prop_diff.R                                261      16  93.87%   72-75, 107, 269-276, 415, 475, 580
R/prune_occurrences.R                         57      10  82.46%   138-142, 188-192
R/response_biomarkers_subgroups.R             60       0  100.00%
R/response_subgroups.R                       165       4  97.58%   266, 308-310
R/rtables_access.R                            38       4  89.47%   159-162
R/score_occurrences.R                         20       1  95.00%   124
R/split_cols_by_groups.R                      49       0  100.00%
R/stat.R                                      47       3  93.62%   73-74, 129
R/summarize_ancova.R                          96       1  98.96%   180
R/summarize_change.R                          28       0  100.00%
R/summarize_colvars.R                          6       0  100.00%
R/summarize_coxreg.R                         165       2  98.79%   198, 420
R/summarize_glm_count.R                      165       4  97.58%   158, 163, 207, 260
R/summarize_num_patients.R                    75       9  88.00%   103-105, 150-151, 218-223
R/summarize_patients_exposure_in_cols.R       97       1  98.97%   56
R/survival_biomarkers_subgroups.R             60       0  100.00%
R/survival_coxph_pairwise.R                   74       9  87.84%   59-67
R/survival_duration_subgroups.R              172       0  100.00%
R/survival_time.R                             48       0  100.00%
R/survival_timepoint.R                       118       7  94.07%   126-132
R/utils_checkmate.R                           68       0  100.00%
R/utils_factor.R                              87       1  98.85%   84
R/utils_grid.R                               111       5  95.50%   149, 258-264
R/utils_rtables.R                             86       7  91.86%   24, 31-35, 346-347
R/utils.R                                    137      10  92.70%   92, 94, 98, 118, 121, 124, 128, 137-138, 311
TOTAL                                       9206     436  95.26%

Diff against main

Filename                                  Stmts    Miss  Cover
--------------------------------------  -------  ------  --------
R/h_adsl_adlb_merge_using_worst_flag.R       -1       0  +100.00%
R/h_stack_by_baskets.R                       -1       0  -0.02%
TOTAL                                        -2       0  -0.00%

Results for commit: 30ac37a

Minimum allowed coverage is 80%

♻️ This comment has been updated with latest results

NEWS.md Outdated Show resolved Hide resolved
NEWS.md Outdated Show resolved Hide resolved
Signed-off-by: Davide Garolini <dgarolini@gmail.com>
@github-actions
Copy link
Contributor

github-actions bot commented Aug 4, 2023

Unit Tests Summary

       1 files    78 suites   1m 36s ⏱️
   743 tests 738 ✔️     5 💤 0
1 571 runs  984 ✔️ 587 💤 0

Results for commit 0d3bd4a.

♻️ This comment has been updated with latest results.

NEWS.md Outdated Show resolved Hide resolved
@Melkiades Melkiades requested review from pawelru and edelarua August 11, 2023 15:46
Copy link
Contributor

@edelarua edelarua left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hi @Melkiades,

Could you add in a note so the user knows that df_explicit_na should be used during pre-processing? Specifically for h_stack_by_baskets the user should be aware that the na_level argument needs to match the na_level used in df_explicit_na, otherwise the argument does nothing.

Thanks!

Copy link
Contributor

@edelarua edelarua left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Approving to unblock since I will be OOO next week.

@shajoezhu
Copy link
Contributor

Beniot also checked downstream. all is well. We are good to go! Thanks @Melkiades and @edelarua

@Melkiades Melkiades enabled auto-merge (squash) August 14, 2023 14:47
@Melkiades Melkiades merged commit 8227195 into main Aug 14, 2023
@Melkiades Melkiades deleted the 1019_remove_internal_expl_na@main branch August 14, 2023 15:02
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

[Question]: why h_adsl_adlb_merge_using_worst_flag calls df_explicit_missing inside the function
4 participants