-
To use the containerized SC pipeline, please install 'singularity' on your computing system: https://sylabs.io/guides/3.3/user-guide/installation.html
-
This pipeline uses Freesurfer. If you do not have a license, please register for Freesurfer: https://surfer.nmr.mgh.harvard.edu/registration.html
-
Essential files
code/Singularity
: Recipe file to be used withsingularity build
to generate a container imagecode/input.txt
: Example pipeline parameter specificationcode/container_SC_pipeline_JURECA.sh
: Script to run an independent module with the optimized configuration for the JURECA HPC system
There are three main paths for this pipeline: working path, raw data path, and target (result) path. These paths have to be specified by the end-users based on their own computing system.
The containerized SC pipeline consists of 4 modules: preprocessing, tractography, atlas transformation, and reconstruction. The containerized SC pipeline uses 2 arguments (module script and input file) as below.
singularity exec --bind /mount/path:/mnt_sc Container_dwMRI.simg /usr/local/bin/container_SC_pipeline.sh /mnt_sc/working/path/input.txt
You can also run a sigle module as below.
singularity exec --bind /mount/path:/mnt_sc Container_dwMRI.simg /usr/local/bin/container_SC_preprocess.sh /mnt_sc/working/path/input.txt
singularity exec --bind /mount/path:/mnt_sc Container_dwMRI.simg /usr/local/bin/container_SC_tractography.sh /mnt_sc/working/path/input.txt
singularity exec --bind /mount/path:/mnt_sc Container_dwMRI.simg /usr/local/bin/container_SC_atlas_transformation.sh /mnt_sc/working/path/input.txt
singularity exec --bind /mount/path:/mnt_sc Container_dwMRI.simg /usr/local/bin/container_SC_reconstruct.sh /mnt_sc/working/path/input.txt
The first argument specifies a module script and the second argument specifies an input file of it.
An example of an input text file is the following.
# Freesurfer license
# ------------------
email=end.user@your-institute.de
digit=xxxxx
line1=xxxxxxxxxxxxx
line2=xxxxxxxxxxxxx
# Input variables
# ---------------
grp=INM # Name of dataset
sbj=Sub-1234 # Subject's ID
tract=100000 # Total number of streamlines for whole-brain tractography
atlname=atlas_prefix # Name of atlas for prefixing results
numparc=100 # Total number of regions in a given atlas
shells=0,1000,2000,3000 # shells=0,1000,2000,3000 for HCP dwMRI, i.e., b-values
# Paths setting
# -------------
tp=/mnt_sc/path/to/results # Target (result) path
sp=/mnt_sc/path/to/raw_data # Source (raw) data path
wp=/mnt_sc/path/to/scripts # Working path
fp=/mnt_sc/freesurfer/subjects # Subject's path for freesurfer
ap=/mnt_sc/path/to/atlas/atlas.nii.gz # Full path of an atlas on the MNI 1mm space (6th generation in FSL)
mni=/mnt_sc/path/to/Standard # Path of the MNI standard T1 1mm template
# Optimal configuration (Default: JURECA setting, 48 threads per node)
# --------------------------------------------------------------------
threads1=6 # For container_SC_preprocess.sh (WARNING: Many runs might cause 'out of memory')
threads2=48 # For container_SC_tractography.sh
threads3=6 # For container_SC_atlas_transformation.sh
threads4=48 # For container_SC_reconstruct.sh
The parameters can be modified by the end-users. For licensing Freesurfer, they should get a license code via a registration with a license agreement and put the license code in the input text file. Input files should be prepared for each subject and each condition. For example, a process of 8 subjects with 2 conditions needs 16 input text files. All input text files should be in the working path, 'wp=/mount/path/to/scripts'.
The raw data path should have a data structure as below (in case of sp=/mnt_sc/path/to/raw_data, grp=INM, and sbj=Sub-1234).
/mnt_sc/path/to/raw_data/INM/Sub-1234/bval
/mnt_sc/path/to/raw_data/INM/Sub-1234/bvec
/mnt_sc/path/to/raw_data/INM/Sub-1234/dwi.nii.gz
/mnt_sc/path/to/raw_data/INM/Sub-1234/t1.nii.gz
INM
|-- Sub-1234
| |-- bval
| |-- bvec
| |-- dwi.nii.gz
| `-- t1w.nii.gz
|-- ...
.
.
Based on the optimized configuration for the containerized SC pipeline on JURECA at Forschungszentrum Jülich, we provide a script to run the SC pipeline, container_SC_pipeline_JURECA.sh. With a modification of three lines in it, you can use the script on JURECA. This script uses 9 arguments: a module name, 8 subject IDs.
simg_path=/path/to/container/Container_dwMRI.simg
wp=/mnt_sc/path/to/scripts
mnt=/local/path/to/mount
The following example is a script for the slurm system on JURECA. You can copy the following lines and create a file for 'sbatch', for instance, 'run_sc_pipeline.sbatch', then execute like this, 'sbatch run_sc_pipeline.sbatch'.
Prepare 8 input files for each subject in the working path (wp=/mnt_sc/path/to/scripts) as below.
input_Sub-1001.txt
input_Sub-1002.txt
input_Sub-1003.txt
input_Sub-1004.txt
input_Sub-1005.txt
input_Sub-1006.txt
input_Sub-1007.txt
input_Sub-1008.txt
Then, make a script for 'sbatch' as below.
#!/bin/bash
#SBATCH -J SC_pipeline
#SBATCH -o slurm_logs/SC_pipeline-out.%j
#SBATCH -e slurm_logs/SC_pipeline-err.%j
#SBATCH -A ${project_account}
#SBATCH --nodes=1
#SBATCH --time=16:00:00
#SBATCH --mail-user=end.user@your-institute.de
#SBATCH --mail-type=All
#SBATCH --partition=batch
bash container_SC_pipeline_JURECA.sh Preprocess Sub-1001 Sub-1002 Sub-1003 Sub-1004 Sub-1005 Sub-1006 Sub-1007 Sub-1008
wait
bash container_SC_pipeline_JURECA.sh Tractography Sub-1001 Sub-1002 Sub-1003 Sub-1004 Sub-1005 Sub-1006 Sub-1007 Sub-1008
wait
bash container_SC_pipeline_JURECA.sh Atlas_transformation Sub-1001 Sub-1002 Sub-1003 Sub-1004 Sub-1005 Sub-1006 Sub-1007 Sub-1008
wait
bash container_SC_pipeline_JURECA.sh Reconstruction Sub-1001 Sub-1002 Sub-1003 Sub-1004 Sub-1005 Sub-1006 Sub-1007 Sub-1008
wait
Each module can perform independently. For instance, if the preprocessing module was already performed for considered subjects, then you can continue to perform on the tractography module for the given subjects. An advanced version will have more parameters such as tracking algorithms, tracking steps, tracking angles, and so forth.
If you have a problem to use the containerized SC pipeline. Please contact Kyesam Jung (k.jung@fz-juelich.de).
This development was supported by European Union’s Horizon 2020 research and innovation programme under grant agreement VirtualBrainCloud (H2020-EU.3.1.5.3, grant no. 826421).