-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
13 changed files
with
699 additions
and
23 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
import DeBruijnSSA.BinSyntax.Rewrite.Term.Eqv | ||
|
||
import Discretion.Utils.Quotient | ||
|
||
namespace BinSyntax | ||
|
||
variable [Φ: EffInstSet φ (Ty α) ε] [PartialOrder α] [SemilatticeSup ε] [OrderBot ε] | ||
|
||
namespace Term | ||
|
||
def Eqv.nil {A : Ty α} {Γ : Ctx α ε} : Eqv φ (⟨A, ⊥⟩::Γ) ⟨A, e⟩ | ||
:= var 0 (by simp) | ||
|
||
@[simp] | ||
theorem Eqv.wk1_nil {A : Ty α} {Γ : Ctx α ε} | ||
: (nil (φ := φ) (A := A) (Γ := Γ) (e := e)).wk1 (inserted := inserted) = nil | ||
:= rfl | ||
|
||
def Eqv.seq {A B C : Ty α} {Γ : Ctx α ε} | ||
(a : Eqv φ ((A, ⊥)::Γ) (B, e)) (b : Eqv φ ((B, ⊥)::Γ) (C, e)) | ||
: Eqv φ ((A, ⊥)::Γ) (C, e) | ||
:= let1 a b.wk1 | ||
|
||
infixl:65 " ;;' " => Eqv.seq | ||
|
||
theorem Eqv.seq_pure {A B C : Ty α} {Γ : Ctx α ε} | ||
(a : Eqv φ ((A, ⊥)::Γ) (B, ⊥)) (b : Eqv φ ((B, ⊥)::Γ) (C, ⊥)) : a ;;' b = b.wk1.subst a.subst0 | ||
:= let1_beta_pure | ||
|
||
theorem Eqv.pure_seq {A B C : Ty α} {Γ : Ctx α ε} | ||
(a : Eqv φ ((A, ⊥)::Γ) (B, ⊥)) (b : Eqv φ ((B, ⊥)::Γ) (C, e)) | ||
: (a.wk_eff (by simp)) ;;' b = b.wk1.subst a.subst0 | ||
:= let1_beta | ||
|
||
theorem Eqv.seq_nil {A B : Ty α} {Γ : Ctx α ε} (a : Eqv φ ((A, ⊥)::Γ) (B, e)) | ||
: a ;;' nil = a := let1_eta | ||
|
||
theorem Eqv.nil_seq {A B : Ty α} {Γ : Ctx α ε} (a : Eqv φ ((A, ⊥)::Γ) (B, e)) | ||
: nil ;;' a = a := by | ||
rw [ seq, nil, <-wk_eff_var (lo := ⊥) (he := bot_le) (hn := Ctx.Var.shead), let1_beta] | ||
induction a using Quotient.inductionOn | ||
simp only [var, subst0_quot, wk1_quot, subst_quot] | ||
-- TODO: lift to InS... | ||
congr | ||
ext | ||
simp | ||
|
||
theorem Eqv.seq_assoc {A B C D : Ty α} {Γ : Ctx α ε} | ||
(a : Eqv φ ((A, ⊥)::Γ) (B, e)) (b : Eqv φ ((B, ⊥)::Γ) (C, e)) (c : Eqv φ ((C, ⊥)::Γ) (D, e)) | ||
: a ;;' (b ;;' c) = (a ;;' b) ;;' c := by simp only [seq, let1_let1, wk1_let1, wk1_wk2] | ||
|
||
def Eqv.pi_l {A B : Ty α} {Γ : Ctx α ε} : Eqv φ (⟨A.prod B, ⊥⟩::Γ) ⟨A, e⟩ | ||
:= let2 nil (var 1 (by simp)) | ||
|
||
def Eqv.pi_r {A B : Ty α} {Γ : Ctx α ε} : Eqv φ (⟨A.prod B, ⊥⟩::Γ) ⟨B, e⟩ | ||
:= let2 nil (var 0 (by simp)) | ||
|
||
-- TODO: lunit, runit, pi_l_lunit, pi_r_runit, lunit_pi_l, runit_pi_r | ||
|
||
def Eqv.prod {A B C : Ty α} {Γ : Ctx α ε} | ||
(l : Eqv φ (⟨A, ⊥⟩::Γ) ⟨B, e⟩) (r : Eqv φ (⟨A, ⊥⟩::Γ) ⟨C, e⟩) | ||
: Eqv φ (⟨A, ⊥⟩::Γ) ⟨B.prod C, e⟩ := let1 nil (pair l.wk1 r.wk1) | ||
|
||
def Eqv.tensor {A A' B B' : Ty α} {Γ : Ctx α ε} | ||
(l : Eqv φ (⟨A, ⊥⟩::Γ) ⟨A', e⟩) (r : Eqv φ (⟨B, ⊥⟩::Γ) ⟨B', e⟩) | ||
: Eqv φ (⟨A.prod B, ⊥⟩::Γ) ⟨A'.prod B', e⟩ := let2 nil (pair l.wk1.wk0 r.wk1.wk1) | ||
|
||
theorem Eqv.tensor_nil_nil {A B : Ty α} {Γ : Ctx α ε} | ||
: tensor (φ := φ) (Γ := Γ) (A := A) (A' := A) (B := B) (B' := B) (e := e) nil nil = nil := by | ||
simp [tensor, nil, let2_eta] | ||
|
||
def Eqv.ltimes {A A' B : Ty α} {Γ : Ctx α ε} | ||
(l : Eqv φ (⟨A, ⊥⟩::Γ) ⟨A', e⟩) | ||
: Eqv φ (⟨A.prod B, ⊥⟩::Γ) ⟨A'.prod B, e⟩ := tensor l nil | ||
|
||
theorem Eqv.ltimes_nil {A B : Ty α} {Γ : Ctx α ε} | ||
: ltimes (φ := φ) (Γ := Γ) (A := A) (A' := A) (B := B) (e := e) nil = nil := tensor_nil_nil | ||
|
||
-- TODO: ltimes_seq | ||
|
||
def Eqv.rtimes {A B B' : Ty α} {Γ : Ctx α ε} | ||
(r : Eqv φ (⟨B, ⊥⟩::Γ) ⟨B', e⟩) | ||
: Eqv φ (⟨A.prod B, ⊥⟩::Γ) ⟨A.prod B', e⟩ := tensor nil r | ||
|
||
theorem Eqv.rtimes_nil {A B : Ty α} {Γ : Ctx α ε} | ||
: rtimes (φ := φ) (Γ := Γ) (A := A) (B := B) (B' := B) (e := e) nil = nil := tensor_nil_nil | ||
|
||
-- TODO: rtimes_seq | ||
|
||
-- TODO: ltimes comm pure | ||
|
||
-- TODO: rtimes comm pure | ||
|
||
-- TODO: tensor_seq (pure only) | ||
|
||
-- TODO: swap | ||
|
||
def Eqv.split {A : Ty α} {Γ : Ctx α ε} : Eqv (φ := φ) (⟨A, ⊥⟩::Γ) ⟨A.prod A, e⟩ | ||
:= let1 nil (pair nil nil) | ||
|
||
-- TODO: split_seq (pure only) | ||
|
||
def Eqv.assoc {A B C : Ty α} {Γ : Ctx α ε} | ||
: Eqv (φ := φ) (⟨(A.prod B).prod C, ⊥⟩::Γ) ⟨A.prod (B.prod C), e⟩ := | ||
let2 nil $ | ||
let2 (var (V := (A.prod B, e)) 1 (by simp)) $ | ||
pair (var 1 (by simp)) (pair (var 0 (by simp)) (var 2 (by simp))) | ||
|
||
def Eqv.assoc_inv {A B C : Ty α} {Γ : Ctx α ε} | ||
: Eqv (φ := φ) (⟨A.prod (B.prod C), ⊥⟩::Γ) ⟨(A.prod B).prod C, e⟩ := | ||
let2 nil $ | ||
let2 (var (V := (B.prod C, e)) 0 (by simp)) $ | ||
pair (pair (var 3 (by simp)) (var 1 (by simp))) (var 0 (by simp)) | ||
|
||
-- TODO: assoc_assoc_inv, assoc_inv_assoc | ||
|
||
def Eqv.coprod {A B C : Ty α} {Γ : Ctx α ε} | ||
(l : Eqv φ (⟨A, ⊥⟩::Γ) ⟨C, e⟩) (r : Eqv φ (⟨B, ⊥⟩::Γ) ⟨C, e⟩) | ||
: Eqv φ (⟨A.coprod B, ⊥⟩::Γ) ⟨C, e⟩ := case nil l.wk1 r.wk1 | ||
|
||
def Eqv.inj_l {A B : Ty α} {Γ : Ctx α ε} : Eqv (φ := φ) (⟨A, ⊥⟩::Γ) ⟨A.coprod B, e⟩ | ||
:= inl nil | ||
|
||
def Eqv.inj_r {A B : Ty α} {Γ : Ctx α ε} : Eqv (φ := φ) (⟨B, ⊥⟩::Γ) ⟨A.coprod B, e⟩ | ||
:= inr nil | ||
|
||
def Eqv.sum {A A' B B' : Ty α} {Γ : Ctx α ε} | ||
(l : Eqv φ (⟨A, ⊥⟩::Γ) ⟨A', e⟩) (r : Eqv φ (⟨B, ⊥⟩::Γ) ⟨B', e⟩) | ||
: Eqv φ (⟨A.coprod B, ⊥⟩::Γ) ⟨A'.coprod B', e⟩ := coprod (l.seq inj_l) (r.seq inj_r) |
Oops, something went wrong.