Skip to content

ikostrikov/implicit_q_learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Ilya KostrikovIlya Kostrikov
Ilya Kostrikov
and
Ilya Kostrikov
Jan 23, 2022
09d7002 · Jan 23, 2022

History

14 Commits
Oct 26, 2021
Oct 10, 2021
Oct 14, 2021
Oct 11, 2021
Jan 23, 2022
Oct 10, 2021
Oct 10, 2021
Oct 10, 2021
Oct 26, 2021
Oct 10, 2021
Nov 1, 2021
Oct 10, 2021
Jan 23, 2022
Oct 28, 2021
Nov 1, 2021
Oct 10, 2021

Repository files navigation

Offline Reinforcement Learning with Implicit Q-Learning

This repository contains the official implementation of Offline Reinforcement Learning with Implicit Q-Learning by Ilya Kostrikov, Ashvin Nair, and Sergey Levine.

If you use this code for your research, please consider citing the paper:

@article{kostrikov2021iql,
    title={Offline Reinforcement Learning with Implicit Q-Learning},
    author={Ilya Kostrikov and Ashvin Nair and Sergey Levine},
    year={2021},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

For a PyTorch reimplementation see https://github.com/rail-berkeley/rlkit/tree/master/examples/iql

How to run the code

Install dependencies

pip install --upgrade pip

pip install -r requirements.txt

# Installs the wheel compatible with Cuda 11 and cudnn 8.
pip install --upgrade "jax[cuda]>=0.2.27" -f https://storage.googleapis.com/jax-releases/jax_releases.html

Also, see other configurations for CUDA here.

Run training

Locomotion

python train_offline.py --env_name=halfcheetah-medium-expert-v2 --config=configs/mujoco_config.py

AntMaze

python train_offline.py --env_name=antmaze-large-play-v0 --config=configs/antmaze_config.py --eval_episodes=100 --eval_interval=100000

Kitchen and Adroit

python train_offline.py --env_name=pen-human-v0 --config=configs/kitchen_config.py

Finetuning on AntMaze tasks

python train_finetune.py --env_name=antmaze-large-play-v0 --config=configs/antmaze_finetune_config.py --eval_episodes=100 --eval_interval=100000 --replay_buffer_size 2000000

Misc

The implementation is based on JAXRL.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages