generated from ihmeuw-msca/pypkg
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
192d160
commit afdbd44
Showing
11 changed files
with
134,276 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,167 @@ | ||
|
||
import numpy as np | ||
import pandas as pd | ||
|
||
pd.options.mode.chained_assignment = None | ||
|
||
def compute_covariance_obs(df_obs, var_names, draws): | ||
|
||
nsamples = len(df_obs[draws].unique()) | ||
var_names.reverse() | ||
df = df_obs[['value'] + var_names + [draws]] | ||
df.sort_values(by=var_names + [draws], inplace=True) | ||
value = df['value'].to_numpy() | ||
X = np.reshape(value, shape=(nsamples, -1), order='F') | ||
Xmean = np.mean(X, axis=0) | ||
Xc = X - Xmean | ||
sigma_yy = np.matmul(np.transpose(Xc), Xc) / nsamples | ||
return sigma_yy | ||
|
||
def compute_covariance_margins_1D(df_margins, var_names, draws): | ||
|
||
nsamples = len(df_margins[draws].unique()) | ||
df = df_margins[['value_agg_over_' + var_names[0]] + [draws]] | ||
df.sort_values(by=[draws], inplace=True) | ||
value = df['value_agg_over_' + var_names[0]].to_numpy() | ||
X = np.reshape(value, shape=(nsamples, -1), order='F') | ||
Xmean = np.mean(X, axis=0) | ||
Xc = X - Xmean | ||
sigma_ss = np.matmul(np.transpose(Xc), Xc) / nsamples | ||
return sigma_ss | ||
|
||
def compute_covariance_margins_2D(df_margins_1, df_margins_2, var_names, draws): | ||
|
||
nsamples = len(df_margins_1[draws].unique()) | ||
df1 = df_margins_1[[var_names[1], 'value_agg_over_' + var_names[0], draws]] | ||
df1.sort_values(by=[var_names[1], draws], inplace=True) | ||
df2 = df_margins_2[[var_names[0], 'value_agg_over_' + var_names[1], draws]] | ||
df2.sort_values(by=[var_names[0], draws], inplace=True) | ||
value1 = df1['value_agg_over_' + var_names[0]].to_numpy() | ||
value2 = df2['value_agg_over_' + var_names[1]].to_numpy() | ||
value = np.concatenate((value1, value2)) | ||
X = np.reshape(value, shape=(nsamples, -1), order='F') | ||
X = X[:, 0:-1] | ||
Xmean = np.mean(X, axis=0) | ||
Xc = X - Xmean | ||
sigma_ss = np.matmul(np.transpose(Xc), Xc) / nsamples | ||
return sigma_ss | ||
|
||
def compute_covariance_margins_3D(df_margins_1, df_margins_2, df_margins_3, var_names, draws): | ||
|
||
nsamples = len(df_margins_1[draws].unique()) | ||
var1 = df_margins_2[var_names[0]].unique().tolist() | ||
var2 = df_margins_1[var_names[1]].unique().tolist() | ||
var3 = df_margins_1[var_names[2]].unique().tolist() | ||
var1.sort() | ||
var2.sort() | ||
var3.sort() | ||
df1 = df_margins_1[[var_names[1], var_names[2], 'value_agg_over_' + var_names[0], draws]] | ||
df1 = df1.loc[(df1[var_names[1]].isin(var2[0:-1]) | ((df1[var_names[1]]==var2[-1]) & (df1[var_names[2]]==var3[-1]))] | ||
df1.sort_values(by=[var_names[2], var_names[1], draws], inplace=True) | ||
df2 = df_margins_2[[var_names[0], var_names[2], 'value_agg_over_' + var_names[1], draws]] | ||
df2 = df2.loc[df2[var_names[2]].isin(var3[0:-1])] | ||
df2.sort_values(by=[var_names[0], var_names[2], draws, inplace=True) | ||
df3 = df_margins_3[[var_names[0], var_names[1], 'value_agg_over_' + var_names[2], draws]] | ||
df3 = df3.loc[df3[var_names[0]].isin(var1[0:-1])] | ||
df3.sort_values(by=[var_names[1], var_names[0], draws, inplace=True) | ||
value1 = df1['value_agg_over_' + var_names[0]].to_numpy() | ||
value2 = df2['value_agg_over_' + var_names[1]].to_numpy() | ||
value3 = df3['value_agg_over_' + var_names[2]].to_numpy() | ||
value = np.concatenate((value1, value2, value3)) | ||
X = np.reshape(value, shape=(nsamples, -1), order='F') | ||
Xmean = np.mean(X, axis=0) | ||
Xc = X - Xmean | ||
sigma_ss = np.matmul(np.transpose(Xc), Xc) / nsamples | ||
return sigma_ss | ||
|
||
def compute_covariance_obs_margins_1D(df_obs, df_margins, var_names, draws): | ||
|
||
nsamples = len(df_obs[draws].unique()) | ||
var_names.reverse() | ||
df_obs = df_obs[['value'] + var_names + [draws]] | ||
df_obs.sort_values(by=var_names + [draws], inplace=True) | ||
df_margins = df_margins[['value_agg_over_' + var_names[0]] + [draws]] | ||
df_margins.sort_values(by=[draws], inplace=True) | ||
value_obs = df_obs['value'].to_numpy() | ||
X = np.reshape(value_obs, shape=(nsamples, -1), order='F') | ||
value_margins = df_margins['value_agg_over_' + var_names[0]].to_numpy() | ||
Y = np.reshape(value_margins, shape=(nsamples, -1), order='F') | ||
Xmean = np.mean(X, axis=0) | ||
Ymean = np.mean(Y, axis=0) | ||
Xc = X - Xmean | ||
Yc = Y - Ymean | ||
sigma_ys = np.matmul(np.transpose(Xc), Yc) / nsamples | ||
return sigma_ys | ||
|
||
def compute_covariance_obs_margins_2D(df_obs, df_margins_1, df_margins_2, var_names, draws): | ||
|
||
nsamples = len(df_obs[draws].unique()) | ||
var_names.reverse() | ||
df_obs = df_obs[var_names + [draws]] | ||
df_obs.sort_values(by=var_names + [draws], inplace=True) | ||
df_margins_1 = df_margins_1[[var_names[1], 'value_agg_over_' + var_names[0], draws]] | ||
df_margins_1.sort_values(by=[var_names[1], draws], inplace=True) | ||
df_margins_2 = df_margins_2[[var_names[0], 'value_agg_over_' + var_names[1], draws]] | ||
df_margins_2.sort_values(by=[var_names[0], draws], inplace=True) | ||
value_obs = df_obs['value'].to_numpy() | ||
X = np.reshape(value_obs, shape=(nsamples, -1), order='F') | ||
value_margins_1 = df_margins_1['value_agg_over_' + var_names[0]].to_numpy() | ||
value_margins_2 = df_margins_2['value_agg_over_' + var_names[1]].to_numpy() | ||
value_margins = np.concatenate((value_margins_1, value_margins_2)) | ||
Y = np.reshape(value_margins, shape=(nsamples, -1), order='F') | ||
Xmean = np.mean(X, axis=0) | ||
Ymean = np.mean(Y, axis=0) | ||
Xc = X - Xmean | ||
Yc = Y - Ymean | ||
sigma_ys = np.matmul(np.transpose(Xc), Yc) / nsamples | ||
return sigma_ys | ||
|
||
def compute_covariance_obs_margins_3D(df_obs, df_margins_1, df_margins_2, df_margins_3, var_names, draws): | ||
|
||
nsamples = len(df_obs[draws].unique()) | ||
var_names.reverse() | ||
df_obs = df_obs[var_names + [draws]] | ||
df_obs.sort_values(by=var_names + [draws], inplace=True) | ||
var1 = df_margins_2[var_names[0]].unique().tolist() | ||
var2 = df_margins_1[var_names[1]].unique().tolist() | ||
var3 = df_margins_1[var_names[2]].unique().tolist() | ||
var1.sort() | ||
var2.sort() | ||
var3.sort() | ||
df_margins_1 = df_margins_1[[var_names[1], var_names[2], 'value_agg_over_' + var_names[0], draws]] | ||
df_margins_1 = df_margins_1.loc[(df_margins_1[var_names[1]].isin(var2[0:-1]) | ((df_margins_1[var_names[1]]==var2[-1]) & (df_margins_1[var_names[2]]==var3[-1]))] | ||
df_margins_1.sort_values(by=[var_names[2], var_names[1], draws], inplace=True) | ||
df_margins_2 = df_margins_2[[var_names[0], var_names[2], 'value_agg_over_' + var_names[1], draws]] | ||
df_margins_2 = df_margins_2.loc[df_margins_2[var_names[2]].isin(var3[0:-1])] | ||
df_margins_2.sort_values(by=[var_names[0], var_names[2], draws, inplace=True) | ||
df_margins_3 = df_margins_3[[var_names[0], var_names[1], 'value_agg_over_' + var_names[2], draws]] | ||
df_margins_3 = df_margins_3.loc[df_margins_3[var_names[0]].isin(var1[0:-1])] | ||
df_margins_3.sort_values(by=[var_names[1], var_names[0], draws, inplace=True) | ||
value_obs = df_obs['value'].to_numpy() | ||
value_margins_1 = df_margins_1['value_agg_over_' + var_names[0]].to_numpy() | ||
value_margins_2 = df_margins_2['value_agg_over_' + var_names[1]].to_numpy() | ||
value_margins_3 = df_margins_3['value_agg_over_' + var_names[2]].to_numpy() | ||
value = np.concatenate((value_obs, value_margins_1, df_margins_2, df_margins_3)) | ||
X = np.reshape(value, shape=(nsamples, -1), order='F') | ||
Xmean = np.mean(X, axis=0) | ||
Xc = X - Xmean | ||
sigma_ys = np.matmul(np.transpose(Xc), Xc) / nsamples | ||
return sigma_ys | ||
|
||
def check_covariance(sigma_yy, sigma_ss, sigma_ys): | ||
""" | ||
""" | ||
sigma = np.concatenate(( \ | ||
np.concatenate((sigma_yy, sigma_ys), axis=1), \ | ||
np.concatenate((np.transpose(sigma_ys), sigma_ss), axis=1)), axis=0) | ||
valid = True | ||
if np.allclose(np.transpose(sigma), sigma, rtol, atol): | ||
valid = False | ||
if np.any(np.linalg.eig(sigma)[0] < 0.0): | ||
valid = False | ||
if not valid: | ||
sigma_yy = np.diag(np.diag(sigma_yy)) | ||
sigma_ss = np.diag(np.diag(sigma_ss)) | ||
sigma_ys = np.zeros(sigma_ys.shape) | ||
return sigma_yy, sigma_ss, sigma_ys | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.