-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #79 from ihmeuw-msca/feature/cat-split
Feature/cat split
- Loading branch information
Showing
11 changed files
with
1,653 additions
and
64 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,174 @@ | ||
import pandas as pd | ||
import numpy as np | ||
|
||
# Import CatSplitter and configurations from your module | ||
from pydisagg.ihme.splitter import ( | ||
CatSplitter, | ||
CatDataConfig, | ||
CatPatternConfig, | ||
CatPopulationConfig, | ||
) | ||
|
||
# Set a random seed for reproducibility | ||
np.random.seed(42) | ||
|
||
# ------------------------------- | ||
# 1. Create and Update data_df | ||
# ------------------------------- | ||
|
||
# Existing data_df DataFrame | ||
data_df = pd.DataFrame( | ||
{ | ||
"seq": [303284043, 303284062, 303284063, 303284064, 303284065], | ||
"location_id": [78, 130, 120, 30, 141], | ||
"mean": [0.5] * 5, | ||
"standard_error": [0.1] * 5, | ||
"year_id": [2015, 2019, 2018, 2017, 2016], | ||
} | ||
) | ||
|
||
# Adding the 'sex' column with a list [1, 2] for each row | ||
data_df["sex"] = [[1, 2]] * len(data_df) | ||
|
||
# Sort data_df for clarity | ||
data_df_sorted = data_df.sort_values(by=["location_id"]).reset_index(drop=True) | ||
|
||
# Display the sorted data_df | ||
print("data_df:") | ||
print(data_df_sorted) | ||
|
||
# ------------------------------- | ||
# 2. Create and Update pattern_df_final | ||
# ------------------------------- | ||
|
||
pattern_df = pd.DataFrame( | ||
{ | ||
"location_id": [78, 130, 120, 30, 141], | ||
"mean": [0.5] * 5, | ||
"standard_error": [0.1] * 5, | ||
"year_id": [2015, 2019, 2018, 2017, 2016], | ||
} | ||
) | ||
|
||
# Create DataFrame for sex=1 | ||
pattern_df_sex1 = pattern_df.copy() | ||
pattern_df_sex1["sex"] = 1 # Assign sex=1 | ||
pattern_df_sex1["mean"] += np.random.normal(0, 0.01, size=len(pattern_df_sex1)) | ||
pattern_df_sex1["standard_error"] += np.random.normal( | ||
0, 0.001, size=len(pattern_df_sex1) | ||
) | ||
pattern_df_sex1["mean"] = pattern_df_sex1["mean"].round(6) | ||
pattern_df_sex1["standard_error"] = pattern_df_sex1["standard_error"].round(6) | ||
|
||
# Create DataFrame for sex=2 | ||
pattern_df_sex2 = pattern_df.copy() | ||
pattern_df_sex2["sex"] = 2 # Assign sex=2 | ||
pattern_df_sex2["mean"] += np.random.normal(0, 0.01, size=len(pattern_df_sex2)) | ||
pattern_df_sex2["standard_error"] += np.random.normal( | ||
0, 0.001, size=len(pattern_df_sex2) | ||
) | ||
pattern_df_sex2["mean"] = pattern_df_sex2["mean"].round(6) | ||
pattern_df_sex2["standard_error"] = pattern_df_sex2["standard_error"].round(6) | ||
|
||
pattern_df_final = pd.concat( | ||
[pattern_df_sex1, pattern_df_sex2], ignore_index=True | ||
) | ||
|
||
# Sort pattern_df_final for clarity | ||
pattern_df_final_sorted = pattern_df_final.sort_values( | ||
by=["location_id", "sex"] | ||
).reset_index(drop=True) | ||
|
||
print("\npattern_df_final:") | ||
print(pattern_df_final_sorted) | ||
|
||
# ------------------------------- | ||
# 3. Create and Update population_df | ||
# ------------------------------- | ||
|
||
population_df = pd.DataFrame( | ||
{ | ||
"location_id": [30, 30, 78, 78, 120, 120, 130, 130, 141, 141], | ||
"year_id": [2017] * 2 | ||
+ [2015] * 2 | ||
+ [2018] * 2 | ||
+ [2019] * 2 | ||
+ [2016] * 2, | ||
"sex": [1, 2] * 5, # Sexes 1 and 2 | ||
"population": [ | ||
39789, | ||
40120, | ||
10234, | ||
10230, | ||
30245, | ||
29870, | ||
19876, | ||
19980, | ||
50234, | ||
49850, | ||
], | ||
} | ||
) | ||
|
||
# Sort population_df for clarity | ||
population_df_sorted = population_df.sort_values( | ||
by=["location_id", "sex"] | ||
).reset_index(drop=True) | ||
|
||
# Display the sorted population_df | ||
print("\npopulation_df:") | ||
print(population_df_sorted) | ||
|
||
# ------------------------------- | ||
# 4. Configure and Run CatSplitter | ||
# ------------------------------- | ||
|
||
# Data configuration | ||
data_config = CatDataConfig( | ||
index=[ | ||
"seq", | ||
"location_id", | ||
"year_id", | ||
"sex", | ||
], # Include 'sex' in the index | ||
cat_group="sex", | ||
val="mean", | ||
val_sd="standard_error", | ||
) | ||
|
||
# Pattern configuration | ||
pattern_config = CatPatternConfig( | ||
by=["location_id", "year_id"], | ||
cat="sex", | ||
val="mean", | ||
val_sd="standard_error", | ||
) | ||
|
||
# Population configuration | ||
population_config = CatPopulationConfig( | ||
index=["location_id", "year_id", "sex"], # Include 'sex' in the index | ||
val="population", | ||
) | ||
|
||
# Initialize the CatSplitter | ||
splitter = CatSplitter( | ||
data=data_config, pattern=pattern_config, population=population_config | ||
) | ||
|
||
# Perform the split | ||
try: | ||
final_split_df = splitter.split( | ||
data=data_df, | ||
pattern=pattern_df_final, | ||
population=population_df, | ||
model="rate", | ||
output_type="rate", | ||
) | ||
|
||
# Sort the final DataFrame by 'seq' and then by 'sex' | ||
final_split_df.sort_values(by=["seq", "sex"], inplace=True) | ||
|
||
print("\nFinal Split DataFrame:") | ||
print(final_split_df) | ||
except Exception as e: | ||
print(f"Error during splitting: {e}") |
Oops, something went wrong.