Effortlessly implementation of pre-existing code from open-source Augmented ML and Automated ML tools that support image classification tasks
This project can be both used as a library and CLI tool.
- Main folder with sub-folders, each named with an integer number
- clone repo:
git clone https://github.com/AnaMiguelRodrigues1/autolens.git
- move to the root of the project
- install the library:
python3.9 setup.py install
- install python virtual environment on the root folder:
python -m venv {automl_tool}_venv
- run
source -m {automl_tool}_venv/bin/activate
from autolens.LUDWIG.run import main #prior selection of automl tool
main(
"../../chest_xray/", #dataset path
1, #bigger steps for less computational resources
(255, 255), #target size
0.2, #size of testing dataset
0.1 #size of validation dataset
)
- clone repo:
git clone https://github.com/AnaMiguelRodrigues1/autolens.git
- move to the root of the project
python3.9 autolens.py "ludwig" "../../chest_xray"
--target_size "(255, 255)"
--test_percentage "0.2"
--val_percentage "0.1"
--clean_metadata "store_true"
--cache_dir "{home_dir}/.cache/autolens"
S.F. - Supported Framework I.S. - Interface Solutions Lang. - Programming Language O.S. - Operative System
Fastai v2.7.12 | Ktrain v0.37.2 | Ludwig v0.8.1.post1 | Autogluon1 v0.8.2 | Autokeras v1.1.0 | |
---|---|---|---|---|---|
S.F. | Pytorch v1.13.1 | Tensorflow v2.11 | Tensorflow2 | Pytorch v1.13.1 | Tensorflow v>=2.8.03 |
I.S. | API | API | API/CLI | API | API |
Lang. | Python v3.7-v3.10 | Python v3.6-v3.10 | Python v>=3.8 | Python v3.8-v3.10 | Python v3.8-v3.11 |
O.S. | Linux, Windows | Linux | Linux, Windows | Linux, Windows4 | Linux, Windows5, MacOS |
- AutoKeras: ImageClassifier
- AutoGluon: AutoMM
- Ludwig: LudwigModel
- Ktrain: vision
- Fastai: vision_learner