Skip to content

Official implementation of MambaRoll: A Physics-Driven Autoregressive State Space Model for Medical Image Reconstruction (https://arxiv.org/abs/2412.09331)

License

Notifications You must be signed in to change notification settings

icon-lab/MambaRoll

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


MambaRoll
Physics-Driven Autoregressive State Space Models for Medical Image Reconstruction

Bilal Kabas1,2·Fuat Arslan1,2·Valiyeh A. Nezhad1,2·Saban Ozturk1,2·Emine U. Saritas1,2·Tolga Çukur1,2

1Bilkent University   2UMRAM


Official PyTorch implementation of MambaRoll, a novel physics-driven autoregressive state space model for enhanced fidelity in medical image reconstruction. In each cascade of an unrolled architecture, MambaRoll employs an autoregressive framework based on physics-driven state space modules (PSSM), where PSSMs efficiently aggregate contextual features at a given spatial scale while maintaining fidelity to acquired data, and autoregressive prediction of next-scale feature maps from earlier spatial scales enhance capture of multi-scale contextual features

architecture

⚙️ Installation

This repository has been developed and tested with CUDA 12.2 and Python 3.12. Below commands create a conda environment with required packages. Make sure conda is installed.

conda env create --file requirements.yaml
conda activate mambaroll
[Optional] Setting Up Faster and Memory-efficient Radon Transform

We use a faster (over 100x) and memory-efficient (~4.5x) implementation of Radon transform (torch-radon). To install, run commands below within mambaroll conda environment.

git clone https://github.com/matteo-ronchetti/torch-radon.git
cd torch-radon
python setup.py install

🗂️ Prepare dataset

MambaRoll supports reconstructions for MRI and CT modalities. Therefore, we have two dataset classes: (1) MRIDataset and (2) CTDataset in datasets.py.

1. MRI dataset folder structure

MRI dataset has subfolders for each undersampling rate, e.g. us4x, us8x, etc. There is a separate .npz file for each contrast.

Details for npz files

A <contrast>.npz file has the following keys:

Variable key Description Shape
image_fs Coil-combined fully-sampled MR image. n_slices x 1 x height x width
image_us Multi-coil undersampled MR image. n_slices x n_coils x height x width
us_masks K-space undersampling masks. n_slices x 1 x height x width
coilmaps Coil sensitivity maps. n_slices x n_coils x height x width
subject_ids Corresponding subject ID for each slice. n_slices
us_factor Undersampling factor. (Single integer value)
fastMRI/
├── us4x/
│   ├── train/
│   │   ├── T1.npz
│   │   ├── T2.npz
│   │   └── FLAIR.npz
│   ├── test/
│   │   ├── T1.npz
│   │   ├── T2.npz
│   │   └── FLAIR.npz
│   └── val/
│       ├── T1.npz
│       ├── T2.npz
│       └── FLAIR.npz
├── us8x/
│   ├── train/...
│   ├── test/...
│   └── val/...
├── ...

2. CT dataset folder structure

Each split in CT dataset contains images with different undersampling rates.

Details for npz files

image_fs.npz files have the fully-sampled data with the following key:

Variable key Description Shape
image_fs Fully-sampled CT image. n_slices x 1 x height x width

A us<us_factor>x.npz file has the following keys:

Variable key Description Shape
image_us Undersampled CT image. n_slices x 1 x height x width
sinogram_us Corresponding sinograms for undersampled CTs. n_slices x 1 x detector_positions x n_projections
projection_angles Projection angles at which the Radon transform performed on fully-sampled images to obtain undersampled ones. n_slices x n_projections
subject_ids Corresponding subject ID for each slice. n_slices
us_factor Undersampling factor. (Single integer value)
lodopab-ct/
├── train/
│   ├── image_fs.npz
│   ├── us4x.npz
│   └── us6x.npz
├── test/
│   ├── image_fs.npz
│   ├── us4x.npz
│   └── us6x.npz
└── val/
    ├── image_fs.npz
    ├── us4x.npz
    └── us6x.npz

🏃 Training

Run the following command to start/resume training. Model checkpoints are saved under logs/$EXP_NAME/MambaRoll/checkpoints directory, and sample validation images are saved under logs/$EXP_NAME/MambaRoll/val_samples. The script supports both single and multi-GPU training. By default, it runs on a single GPU. To enable multi-GPU training, set --trainer.devices argument to the list of devices, e.g. 0,1,2,3. Be aware that multi-GPU training may lead to convergence issues. Therefore, it is only recommended during inference/testing.

python main.py fit \
    --config $CONFIG_PATH \
    --trainer.logger.name $EXP_NAME \
    --model.mode $MODE \
    --data.dataset_dir $DATA_DIR \
    --data.contrast $CONTRAST \
    --data.us_factor $US_FACTOR \
    --data.train_batch_size $BS_TRAIN \
    --data.val_batch_size $BS_VAL \
    [--trainer.max_epoch $N_EPOCHS] \
    [--ckpt_path $CKPT_PATH] \
    [--trainer.devices $DEVICES]

Example Commands

MRI reconstruction using fastMRI dataset:

python main.py fit \
  --config configs/config_fastmri.yaml \
  --trainer.logger.name fastmri_t1_us8x \
  --data.dataset_dir ../datasets/fastMRI \
  --data.contrast T1 \
  --data.us_factor 8 \
  --data.train_batch_size 1 \
  --data.val_batch_size 16 \
  --trainer.devices [0]

CT reconstruction using LoDoPaB-CT dataset:

python main.py fit \
  --config configs/config_ct.yaml \
  --trainer.logger.name ct_us4x \
  --data.dataset_dir ../datasets/lodopab-ct/ \
  --data.us_factor 4 \
  --data.train_batch_size 1 \
  --data.val_batch_size 16 \
  --trainer.devices [0]

Argument descriptions

Argument Description
--config Config file path. Available config files: 'configs/config_mri.yaml' and 'configs/config_ct.yaml'
--trainer.logger.name Experiment name.
--model.mode Mode depending on data modality. Options: 'mri', 'ct'.
--data.dataset_dir Data set directory.
--data.contrast Source contrast, e.g. 'T1', 'T2', ... for MRI. Should match the folder name for that contrast.
--data.us_factor Undersampling factor, e.g 4, 8.
--data.train_batch_size Train set batch size.
--data.val_batch_size Validation set batch size.
--trainer.max_epoch [Optional] Number of training epochs (default: 50).
--ckpt_path [Optional] Model checkpoint path to resume training.
--trainer.devices [Optional] Device or list of devices. For multi-GPU set to the list of device ids, e.g 0,1,2,3 (default: [0]).

🧪 Testing

Run the following command to start testing. The predicted images are saved under logs/$EXP_NAME/MambaRoll/test_samples directory. By default, the script runs on a single GPU. To enable multi-GPU testing, set --trainer.devices argument to the list of devices, e.g. 0,1,2,3.

python main.py test \
    --config $CONFIG_PATH \
    --model.mode $MODE \
    --data.dataset_dir $DATA_DIR \
    --data.contrast $CONTRAST \
    --data.us_factor $US_FACTOR \
    --data.test_batch_size $BS_TEST \
    --ckpt_path $CKPT_PATH

Argument descriptions

Some arguments are common to both training and testing and are not listed here. For details on those arguments, please refer to the training section.

Argument Description
--data.test_batch_size Test set batch size.
--ckpt_path Model checkpoint path.

✒️ Citation

You are encouraged to modify/distribute this code. However, please acknowledge this code and cite the paper appropriately.

@article{kabas2024mambaroll,
  title={Physics-Driven Autoregressive State Space Models for Medical Image Reconstruction}, 
  author={Bilal Kabas and Fuat Arslan and Valiyeh A. Nezhad and Saban Ozturk and Emine U. Saritas and Tolga Çukur},
  year={2024},
  journal={arXiv:2412.09331}
}

💡 Acknowledgments

This repository uses code from the following projects:


Copyright © 2024, ICON Lab.