Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Pipeline for Text Generation: GenerationPipeline #3758

Merged
merged 82 commits into from
Apr 22, 2020
Merged

Pipeline for Text Generation: GenerationPipeline #3758

merged 82 commits into from
Apr 22, 2020

Conversation

enzoampil
Copy link
Contributor

@enzoampil enzoampil commented Apr 12, 2020

This PR implements a text generation pipeline, GenerationPipeline, which works on any ModelWithLMHead head, and resolves issue #3728

This pipeline predicts the words that will follow a specified text prompt for autoregressive language models. I've registered it to the pipeline function using gpt2 as the default model_type.

The implementation is based on the approach taken in run_generation.py, which means the forward pass uses the PreTrainedModel.generate() method in modeling_utils.py, as recommended to me by @julien-c and @patrickvonplaten .

Sample code:

# Pip install
# If you're using Google Colab, make sure to reset runtime after installing
!pip install -e git+git://github.com/enzoampil/transformers.git@generation_pipeline#egg=transformers

# Pipeline uses `gpt2` by default
from transformers import pipeline
gpt = pipeline('generation', num_return_sequences=1, length=40)
gpt("Natural language processing is amazing!")

# ["Natural language processing is amazing! Just take a look at these some of the features. Go off and read up on them all…\n\nSay hello to the world of BitLocker with ES2016. It's a game."]

Google Colab tutorial here for running GenerationPipeline for the following LM models:

  1. OpenAI GPT
  2. OpenAI GPT-2
  3. Transformer-XL
  4. XML
  5. XLNet
  6. T5
  7. CTRL (colab RAM is too small to read this model)

For context, I also plan to use the above GenerationPipeline for my Humor Generation Bot (issue).

I'm very keen to get feedback for the above, so please let me know if I should change anything, or perform additional steps to bring its quality to an acceptable level.

@patrickvonplaten
Copy link
Contributor

patrickvonplaten commented Apr 21, 2020

@enzoampil - Sorry for fiddling in your code so much :D
It's actually not as easy as I thought to have the final output correct for XLNet and Transfo-XL. My commits suggestions now should work. You should run make style once they are integrated :-)

@patrickvonplaten
Copy link
Contributor

patrickvonplaten commented Apr 21, 2020

Maybe we should also add an optional padding argument to the __call__ function that overwrites self.PADDING for XLNet and Transfo-XL @LysandreJik. But we can do this in a separate PR @enzoampil - let's try to merge this one first.

@patrickvonplaten
Copy link
Contributor

Sorry, I forgot to add the max_length as generation task specific params to the XLNet and TransfoXL configs. I will do this now.

Ok added it to the config of Transfo-XL and XLNet

@LysandreJik @thomwolf, we also might want to discuss the default generation params for each model. I think it might e.g. be better to set do_sample=True for all models that can generate.

@LysandreJik
Copy link
Member

I don't have any strong opinions on whether we should sample or not; However, I think whatever the choice we should make sure that it is explicit in the pipeline documentation that we may control it from the pipeline directly.

Maybe a link linking to the generate method would do the trick, alongside a small explanation that all kwargs will be passed to this underlying method.

@enzoampil
Copy link
Contributor Author

enzoampil commented Apr 22, 2020

@patrickvonplaten Ran make_style and just fixed a minor bug from the generation line I think being accidentally taken out from one of your prior commits. The pipeline seems to work fine now 😄

Also, not sure if this is specific to this PR, but there are tests that are suddenly returning an error for the lines that contain self._create_and_check_torchscript(config, inputs_dict).

Sample error:

_____________ AlbertModelTest.test_torchscript_output_hidden_state _____________
[gw7] linux -- Python 3.7.7 /usr/local/bin/python

self = <tests.test_modeling_albert.AlbertModelTest testMethod=test_torchscript_output_hidden_state>

    def test_torchscript_output_hidden_state(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
    
        config.output_hidden_states = True
>       self._create_and_check_torchscript(config, inputs_dict)

tests/test_modeling_common.py:197: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
tests/test_modeling_common.py:206: in _create_and_check_torchscript
    model = model_class(config=configs_no_init)
/usr/local/lib/python3.7/site-packages/transformers/modeling_albert.py:455: in __init__
    self.init_weights()
/usr/local/lib/python3.7/site-packages/transformers/modeling_utils.py:392: in init_weights
    self.apply(self._init_weights)
/usr/local/lib/python3.7/site-packages/torch/nn/modules/module.py:289: in apply
    module.apply(fn)
/usr/local/lib/python3.7/site-packages/torch/nn/modules/module.py:289: in apply
    module.apply(fn)
/usr/local/lib/python3.7/site-packages/torch/nn/modules/module.py:290: in apply
    fn(self)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = AlbertModel(
  (embeddings): AlbertEmbeddings(
    (word_embeddings): Embedding(99, 128, padding_idx=0)
    (position_...     )
      )
    )
  )
  (pooler): Linear(in_features=36, out_features=36, bias=True)
  (pooler_activation): Tanh()
)
module = Embedding(99, 128, padding_idx=0)

    def _init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
>           module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
E           RuntimeError: normal_ expects std > 0.0, but found std=0

/usr/local/lib/python3.7/site-packages/transformers/modeling_albert.py:377: RuntimeError
________________________ BertModelTest.test_headmasking ________________________
[gw1] linux -- Python 3.7.7 /usr/local/bin/python

self = <tests.test_modeling_bert.BertModelTest testMethod=test_headmasking>

    def test_headmasking(self):
        if not self.test_head_masking:
            return
    
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
    
        config.output_attentions = True
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
>           model = model_class(config=configs_no_init)

tests/test_modeling_common.py:260: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/local/lib/python3.7/site-packages/transformers/modeling_bert.py:619: in __init__
    self.init_weights()
/usr/local/lib/python3.7/site-packages/transformers/modeling_utils.py:392: in init_weights
    self.apply(self._init_weights)
/usr/local/lib/python3.7/site-packages/torch/nn/modules/module.py:289: in apply
    module.apply(fn)
/usr/local/lib/python3.7/site-packages/torch/nn/modules/module.py:289: in apply
    module.apply(fn)
/usr/local/lib/python3.7/site-packages/torch/nn/modules/module.py:290: in apply
    fn(self)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = BertModel(
  (embeddings): BertEmbeddings(
    (word_embeddings): Embedding(99, 32, padding_idx=0)
    (position_embed...
  (pooler): BertPooler(
    (dense): Linear(in_features=32, out_features=32, bias=True)
    (activation): Tanh()
  )
)
module = Embedding(99, 32, padding_idx=0)

    def _init_weights(self, module):
        """ Initialize the weights """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
>           module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
E           RuntimeError: normal_ expects std > 0.0, but found std=0

/usr/local/lib/python3.7/site-packages/transformers/modeling_bert.py:525: RuntimeError

@patrickvonplaten
Copy link
Contributor

Those test are probably falling because the new Pytorch version was released. Can you just tense your branch in master?:

$ git fetch upstream
$ git rebase upstream/master

(Assuming that you added the master branch as a remote branch "upstream").

The test should then pass :-)

@enzoampil
Copy link
Contributor Author

enzoampil commented Apr 22, 2020

@patrickvonplaten Apologies, I'm having issues with the rebase suggested above.

I initially tried it but ended up showing up as a co-committer with the rebased commits, which explains why I performed a force-push above to revert the rebase. It might be related to an issue I'm having where I'm forced to do a rebase --skip with each of the conflicts (same situation as here).

May I please ask for some assistance / advice with this?

Copy link
Member

@julien-c julien-c left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Clean implementation, congrats @enzoampil and thanks @patrickvonplaten for the great review

src/transformers/pipelines.py Outdated Show resolved Hide resolved
@julien-c julien-c merged commit f16540f into huggingface:master Apr 22, 2020
jplu pushed a commit to jplu/transformers that referenced this pull request Apr 22, 2020
* Add GenerationPipeline

* Fix parameter names

* Correct parameter __call__ parameters

* Add model type attribute and correct function calls for prepare_input

* Take out trailing commas from init attributes

* Remove unnecessary tokenization line

* Implement support for multiple text inputs

* Apply generation support for multiple input text prompts

* Take out tensor coersion

* Take out batch index

* Add text prompt to return sequence

* Squeeze token tensore before decoding

* Return only a single list of sequences if only one prompt was used

* Correct results variable name

* Add GenerationPipeline to SUPPORTED_TASKS with the alias , initalized w GPT2

* Registedred AutoModelWithLMHead for both pt and t

* Update docstring for GenerationPipeline

* Add kwargs parameter to mode.generate

* Take out kwargs parameter after all

* Add generation pipeline example in pipeline docstring

* Fix max length by squeezing tokens tensor

* Apply ensure_tensor_on_device to pytorch tensor

* Include generation step in torch.no_grad

* Take out input from prepare_xlm_input and set 'en' as default xlm_language

* Apply framework specific encoding during prepare_input

* Format w make style

* Move GenerationPipeline import to follow proper import sorting

* Take out training comma from generation dict

* Apply requested changes

* Change name to TextGenerationPipeline

* Apply TextGenerationPipeline rename to __init___

* Changing alias to

* Set input mapping as input to ensure_tensor_on_device

* Fix assertion placement

* Add test_text_generation

* Add TextGenerationPipeline to PipelineCommonTests

* Take out whitespace

* Format __init__ w black

* Fix __init__ style

* Forman __init___

* Add line to end of __init__

* Correct model tokenizer set for test_text_generation

* Ensure to return list of list, not list of string (to pass test)

* Limit test models to only 3 to limit runtime to address circleCI timeout error

* Update src/transformers/pipelines.py

Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines.py

Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines.py

Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines.py

Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines.py

Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_pipelines.py

Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines.py

Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines.py

Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines.py

Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>

* Remove argument docstring, __init__, add additional __call__ arguments, and reformat results to list of dict

* Fix blank result list

* Add TextGenerationPipeline to pipelines.rst

* Update src/transformers/pipelines.py

Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines.py

Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>

* Fix typos from adding PADDING_TEXT_TOKEN_LENGTH

* Fix incorrectly moved result list

* Update src/transformers/pipelines.py

Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines.py

* Update src/transformers/pipelines.py

* Update src/transformers/pipelines.py

* Update src/transformers/pipelines.py

* Update src/transformers/pipelines.py

* Update src/transformers/pipelines.py

* Update src/transformers/pipelines.py

* Update src/transformers/pipelines.py

* Update src/transformers/pipelines.py

* Update src/transformers/pipelines.py

* Update src/transformers/pipelines.py

* Update src/transformers/pipelines.py

Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>

* Add back generation line and make style

* Take out blank whitespace

* Apply new alis, text-generation, to test_pipelines

* Fix text generation alias in test

* Update src/transformers/pipelines.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Julien Chaumond <chaumond@gmail.com>
@enzoampil
Copy link
Contributor Author

Once again, thanks so much! Looking forward to contributing more in the future 😄@patrickvonplaten @julien-c

@enzoampil enzoampil deleted the generation_pipeline branch April 22, 2020 23:01
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

6 participants