Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

enable memory tracker metrics for npu #27280

Merged
merged 1 commit into from
Nov 6, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions src/transformers/trainer_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -459,6 +459,11 @@ def __init__(self, skip_memory_metrics=False):
elif is_torch_xpu_available():
import torch

self.torch = torch
self.gpu = {}
elif is_torch_npu_available():
import torch

self.torch = torch
self.gpu = {}
else:
Expand Down Expand Up @@ -517,13 +522,18 @@ def start(self):
elif is_torch_xpu_available():
self.torch.xpu.reset_peak_memory_stats()
self.torch.xpu.empty_cache()
elif is_torch_npu_available():
self.torch.npu.reset_peak_memory_stats()
self.torch.npu.empty_cache()

# gpu
if self.torch is not None:
if torch.cuda.is_available():
self.gpu_mem_used_at_start = self.torch.cuda.memory_allocated()
elif is_torch_xpu_available():
self.gpu_mem_used_at_start = self.torch.xpu.memory_allocated()
elif is_torch_npu_available():
self.gpu_mem_used_at_start = self.torch.npu.memory_allocated()

# cpu
self.cpu_mem_used_at_start = self.cpu_mem_used()
Expand Down Expand Up @@ -551,6 +561,8 @@ def stop(self, stage):
self.torch.cuda.empty_cache()
elif is_torch_xpu_available():
self.torch.xpu.empty_cache()
elif is_torch_npu_available():
self.torch.npu.empty_cache()

# concepts:
# - alloc_delta: the difference of allocated memory between the end and the start
Expand All @@ -565,6 +577,9 @@ def stop(self, stage):
elif is_torch_xpu_available():
self.gpu_mem_used_now = self.torch.xpu.memory_allocated()
self.gpu_mem_used_peak = self.torch.xpu.max_memory_allocated()
elif is_torch_npu_available():
self.gpu_mem_used_now = self.torch.npu.memory_allocated()
self.gpu_mem_used_peak = self.torch.npu.max_memory_allocated()
else:
raise ValueError("No available GPU device found!")

Expand Down
6 changes: 3 additions & 3 deletions tests/trainer/test_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -1944,18 +1944,18 @@ def check_mem_metrics(self, trainer, check_func):
metrics = trainer.train().metrics
check_func("init_mem_cpu_alloc_delta", metrics)
check_func("train_mem_cpu_alloc_delta", metrics)
if torch.cuda.device_count() > 0:
if backend_device_count(torch_device) > 0:
check_func("init_mem_gpu_alloc_delta", metrics)
check_func("train_mem_gpu_alloc_delta", metrics)

metrics = trainer.evaluate()
check_func("eval_mem_cpu_alloc_delta", metrics)
if torch.cuda.device_count() > 0:
if backend_device_count(torch_device) > 0:
check_func("eval_mem_gpu_alloc_delta", metrics)

metrics = trainer.predict(RegressionDataset()).metrics
check_func("test_mem_cpu_alloc_delta", metrics)
if torch.cuda.device_count() > 0:
if backend_device_count(torch_device) > 0:
check_func("test_mem_gpu_alloc_delta", metrics)

def test_mem_metrics(self):
Expand Down
Loading