Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add vision example to README #18194

Merged
merged 1 commit into from
Jul 19, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 35 additions & 10 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -116,22 +116,46 @@ To immediately use a model on a given input (text, image, audio, ...), we provid

The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here the answer is "positive" with a confidence of 99.97%.

Many NLP tasks have a pre-trained `pipeline` ready to go. For example, we can easily extract question answers given context:
Many tasks have a pre-trained `pipeline` ready to go, in NLP but also in computer vision and speech. For example, we can easily extract detect objects in an image:

``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline

# Allocate a pipeline for question-answering
>>> question_answerer = pipeline('question-answering')
>>> question_answerer({
... 'question': 'What is the name of the repository ?',
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}

# Download an image with cute cats
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)

# Allocate a pipeline for object detection
>>> object_detector = pipeline('object_detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```

In addition to the answer, the pretrained model used here returned its confidence score, along with the start position and end position of the answer in the tokenized sentence. You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/docs/transformers/task_summary).
Here we get a list of objects detected in the image, with a box surrounding the object and a confidence score. Here is the original image on the right, with the predictions displayed on the left:

<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>

You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/docs/transformers/task_summary).

To download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version:
```python
Expand All @@ -143,6 +167,7 @@ To download and use any of the pretrained models on your given task, all it take
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```

And here is the equivalent code for TensorFlow:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
Expand Down