-
Notifications
You must be signed in to change notification settings - Fork 27.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Crash at the end of training #9
Comments
Here's the specific command I ran for more context:
|
Hi Kerem, yes I fixed this bug yesterday in commit 2c5d993 (a bug with batches of dimension 1) I got good results with these hyperparameters last night: python run_squad.py \
--vocab_file $BERT_BASE_DIR/vocab.txt \
--bert_config_file $BERT_BASE_DIR/bert_config.json \
--init_checkpoint $BERT_PYTORCH_DIR/pytorch_model.bin \
--do_train \
--do_predict \
--do_lower_case
--train_file $SQUAD_DIR/train-v1.1.json \
--predict_file $SQUAD_DIR/dev-v1.1.json \
--train_batch_size 12 \
--learning_rate 3e-5 \
--num_train_epochs 2.0 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ../debug_squad/ I found: {"f1": 88.52381567990474, "exact_match": 81.22043519394512} Feel free to reopen the issue if needed. |
Closed
LysandreJik
added a commit
that referenced
this issue
Apr 10, 2020
* Initial commit to get BERT + run_glue.py on TPU * Add README section for TPU and address comments. * Cleanup TPU bits from run_glue.py (#3) TPU runner is currently implemented in: https://github.com/pytorch-tpu/transformers/blob/tpu/examples/run_glue_tpu.py. We plan to upstream this directly into `huggingface/transformers` (either `master` or `tpu`) branch once it's been more thoroughly tested. * Cleanup TPU bits from run_glue.py TPU runner is currently implemented in: https://github.com/pytorch-tpu/transformers/blob/tpu/examples/run_glue_tpu.py. We plan to upstream this directly into `huggingface/transformers` (either `master` or `tpu`) branch once it's been more thoroughly tested. * No need to call `xm.mark_step()` explicitly (#4) Since for gradient accumulation we're accumulating on batches from `ParallelLoader` instance which on next() marks the step itself. * Resolve R/W conflicts from multiprocessing (#5) * Add XLNet in list of models for `run_glue_tpu.py` (#6) * Add RoBERTa to list of models in TPU GLUE (#7) * Add RoBERTa and DistilBert to list of models in TPU GLUE (#8) * Use barriers to reduce duplicate work/resources (#9) * Shard eval dataset and aggregate eval metrics (#10) * Shard eval dataset and aggregate eval metrics Also, instead of calling `eval_loss.item()` every time do summation with tensors on device. * Change defaultdict to float * Reduce the pred, label tensors instead of metrics As brought up during review some metrics like f1 cannot be aggregated via averaging. GLUE task metrics depends largely on the dataset, so instead we sync the prediction and label tensors so that the metrics can be computed accurately on those instead. * Only use tb_writer from master (#11) * Apply huggingface black code formatting * Style * Remove `--do_lower_case` as example uses cased * Add option to specify tensorboard logdir This is needed for our testing framework which checks regressions against key metrics writtern by the summary writer. * Using configuration for `xla_device` * Prefix TPU specific comments. * num_cores clarification and namespace eval metrics * Cache features file under `args.cache_dir` Instead of under `args.data_dir`. This is needed as our test infra uses data_dir with a read-only filesystem. * Rename `run_glue_tpu` to `run_tpu_glue` Co-authored-by: LysandreJik <lysandre.debut@reseau.eseo.fr>
2 tasks
rraminen
pushed a commit
to rraminen/transformers
that referenced
this issue
Jun 3, 2022
xloem
pushed a commit
to xloem/transformers
that referenced
this issue
Apr 9, 2023
* Update trainer and model flows to accommodate sparseml Disable FP16 on QAT start (huggingface#12) * Override LRScheduler when using LRModifiers * Disable FP16 on QAT start * keep wrapped scaler object for training after disabling Using QATMatMul in DistilBERT model class (huggingface#41) Removed double quantization of output of context layer. (huggingface#45) Fix DataParallel validation forward signatures (huggingface#47) * Fix: DataParallel validation forward signatures * Update: generalize forward_fn selection Best model after epoch (huggingface#46) fix sclaer check for non fp16 mode in trainer (huggingface#38) Mobilebert QAT (huggingface#55) * Remove duplicate quantization of vocabulary. enable a QATWrapper for non-parameterized matmuls in BERT self attention (huggingface#9) * Utils and auxillary changes update Zoo stub loading for SparseZoo 1.1 refactor (huggingface#54) add flag to signal NM integration is active (huggingface#32) Add recipe_name to file names * Fix errors introduced in manual cherry-pick upgrade Co-authored-by: Benjamin Fineran <bfineran@users.noreply.github.com>
jameshennessytempus
pushed a commit
to jameshennessytempus/transformers
that referenced
this issue
Jun 1, 2023
1 task
ocavue
pushed a commit
to ocavue/transformers
that referenced
this issue
Sep 13, 2023
Use merged decoders
younesbelkada
pushed a commit
to younesbelkada/transformers
that referenced
this issue
Mar 14, 2024
LysandreJik
pushed a commit
that referenced
this issue
Mar 15, 2024
* Cohere Model Release (#1) Cohere Model Release * Remove unnecessary files and code (#2) Some cleanup * Delete cohere-model directory (#3) * Make Fix (#5) * Pr fixes (#6) * fixes for pr * pr fixes for the format * pr fixes for the format * src/transformers/models/auto/tokenization_auto.py * Tokenizer test (#8) * tokenizer test * format fix * Adding Docs and other minor changes (#7) * Add modeling tests (#9) * Smol Fix (#11) * tokenization tests are fixed * format fixes * fix pr doc tests * fix pr doc tests * fix pr doc tests * fix pr style check * small changes in cohere.md * FIX: Address final comments for transformers integration (#13) * fix modeling final nits and add proper test file * for now leave empty tests * add integration test * push new test * fix modeling cohere (#14) * Update chat templates to use the new API (#15) --------- Co-authored-by: ahmetustun <ahmetustun89@gmail.com> Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com> Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
lcong
pushed a commit
to lcong/transformers
that referenced
this issue
Apr 9, 2024
Update 16_tensorboard.py
ArthurZucker
pushed a commit
that referenced
this issue
Apr 9, 2024
SangbumChoi
added a commit
to SangbumChoi/transformers
that referenced
this issue
Aug 22, 2024
add num_nms parameters and set to 100
SunMarc
added a commit
that referenced
this issue
Jan 15, 2025
* gptqmodel Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix format Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * update readme Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * gptqmodel need use checkpoint_format (#1) * gptqmodel need use checkpoint_format * fix quantize * Update quantization_config.py * Update quantization_config.py * Update quantization_config.py --------- Co-authored-by: ZX-ModelCloud <zx@modelcloud.ai> Co-authored-by: Qubitium-ModelCloud <qubitium@modelcloud.ai> * Revert quantizer_gptq.py (#2) * revert quantizer_gptq.py change * pass **kwargs * limit gptqmodel and optimum version Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix format Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix warning Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix version check Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * revert unrelated changes Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * enable gptqmodel tests Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix requires gptq Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * Fix Transformer compat (#3) * revert quantizer_gptq.py change * pass **kwargs * add meta info * cleanup * cleanup * Update quantization_config.py * hf_select_quant_linear pass checkpoint_format and meta * fix GPTQTestCUDA * Update test_gptq.py * gptqmodel.hf_select_quant_linear() now does not select ExllamaV2 * cleanup * add backend * cleanup * cleanup * no need check exllama version * Update quantization_config.py * lower checkpoint_format and backend * check none * cleanup * Update quantization_config.py * fix self.use_exllama == False * spell * fix unittest * fix unittest --------- Co-authored-by: LRL <lrl@lbx.dev> Co-authored-by: Qubitium-ModelCloud <qubitium@modelcloud.ai> * fix format Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix format again Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * update gptqmodel version (#6) * update gptqmodel version * update gptqmodel version * fix unit test (#5) * update gptqmodel version * update gptqmodel version * "not self.use_exllama" is not equivalent to "self.use_exllama==False" * fix unittest * update gptqmodel version * backend is loading_attibutes (#7) * fix format and tests Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix memory check Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix device mismatch Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix result check Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * Update src/transformers/quantizers/quantizer_gptq.py Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update src/transformers/quantizers/quantizer_gptq.py Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> * Update src/transformers/quantizers/quantizer_gptq.py Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> * update tests Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * review: update docs (#10) * review: update docs (#12) * review: update docs * fix typo * update tests for gptqmodel Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * update document (#9) * update overview.md * cleanup * Update overview.md * Update overview.md * Update overview.md * update gptq.md * Update gptq.md * Update gptq.md * Update gptq.md * Update gptq.md * Update gptq.md * Update gptq.md --------- Co-authored-by: Qubitium-ModelCloud <qubitium@modelcloud.ai> * typo * doc note for asymmetric quant * typo with apple silicon(e) * typo for marlin * column name revert: review * doc rocm support * Update docs/source/en/quantization/gptq.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/quantization/gptq.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/quantization/gptq.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/quantization/gptq.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/quantization/overview.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/quantization/overview.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> --------- Signed-off-by: jiqing-feng <jiqing.feng@intel.com> Co-authored-by: LRL-ModelCloud <165116337+LRL-ModelCloud@users.noreply.github.com> Co-authored-by: ZX-ModelCloud <zx@modelcloud.ai> Co-authored-by: Qubitium-ModelCloud <qubitium@modelcloud.ai> Co-authored-by: ZX-ModelCloud <165115237+ZX-ModelCloud@users.noreply.github.com> Co-authored-by: LRL <lrl@lbx.dev> Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com> Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com> Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi, I tried running the Squad model this morning (on a single GPU with gradient accumulation over 3 steps) but after 3 hours of training, my job failed with the following output:
I was running the code, unmodified, from commit 3bfbc21
Is this an issue you know about?
The text was updated successfully, but these errors were encountered: