Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix conda release by adding pyarrow-hotfix dependency #6423

Merged
merged 1 commit into from
Nov 15, 2023

Conversation

albertvillanova
Copy link
Member

@albertvillanova albertvillanova commented Nov 15, 2023

Fix conda release by adding pyarrow-hotfix dependency.

Note that conda release failed in latest 2.14.7 release: https://github.com/huggingface/datasets/actions/runs/6874667214/job/18696761723

Traceback (most recent call last):
  File "/usr/share/miniconda/envs/build-datasets/conda-bld/datasets_1700036460222/test_tmp/run_test.py", line 2, in <module>
    import datasets
  File "/usr/share/miniconda/envs/build-datasets/conda-bld/datasets_1700036460222/_test_env_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold/lib/python3.12/site-packages/datasets/__init__.py", line 22, in <module>
    from .arrow_dataset import Dataset
  File "/usr/share/miniconda/envs/build-datasets/conda-bld/datasets_1700036460222/_test_env_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold/lib/python3.12/site-packages/datasets/arrow_dataset.py", line 67, in <module>
    from .arrow_writer import ArrowWriter, OptimizedTypedSequence
  File "/usr/share/miniconda/envs/build-datasets/conda-bld/datasets_1700036460222/_test_env_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold/lib/python3.12/site-packages/datasets/arrow_writer.py", line 27, in <module>
    from .features import Features, Image, Value
  File "/usr/share/miniconda/envs/build-datasets/conda-bld/datasets_1700036460222/_test_env_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold/lib/python3.12/site-packages/datasets/features/__init__.py", line 18, in <module>
    from .features import Array2D, Array3D, Array4D, Array5D, ClassLabel, Features, Sequence, Value
  File "/usr/share/miniconda/envs/build-datasets/conda-bld/datasets_1700036460222/_test_env_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold/lib/python3.12/site-packages/datasets/features/features.py", line 34, in <module>
    import pyarrow_hotfix  # noqa: F401  # to fix vulnerability on pyarrow<14.0.1
    ^^^^^^^^^^^^^^^^^^^^^
ModuleNotFoundError: No module named 'pyarrow_hotfix'

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented Nov 15, 2023

The documentation is not available anymore as the PR was closed or merged.

Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004476 / 0.011353 (-0.006877) 0.002691 / 0.011008 (-0.008317) 0.061400 / 0.038508 (0.022892) 0.030096 / 0.023109 (0.006986) 0.279868 / 0.275898 (0.003970) 0.310320 / 0.323480 (-0.013159) 0.003873 / 0.007986 (-0.004112) 0.002394 / 0.004328 (-0.001935) 0.048307 / 0.004250 (0.044056) 0.043326 / 0.037052 (0.006273) 0.288256 / 0.258489 (0.029767) 0.311449 / 0.293841 (0.017609) 0.022970 / 0.128546 (-0.105576) 0.006714 / 0.075646 (-0.068932) 0.201656 / 0.419271 (-0.217615) 0.052811 / 0.043533 (0.009278) 0.285123 / 0.255139 (0.029984) 0.301495 / 0.283200 (0.018295) 0.017531 / 0.141683 (-0.124152) 1.097660 / 1.452155 (-0.354494) 1.161986 / 1.492716 (-0.330731)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.089223 / 0.018006 (0.071217) 0.297815 / 0.000490 (0.297326) 0.000205 / 0.000200 (0.000005) 0.000042 / 0.000054 (-0.000013)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018679 / 0.037411 (-0.018732) 0.062742 / 0.014526 (0.048216) 0.072869 / 0.176557 (-0.103687) 0.120730 / 0.737135 (-0.616406) 0.074526 / 0.296338 (-0.221813)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.299977 / 0.215209 (0.084768) 2.921029 / 2.077655 (0.843375) 1.632283 / 1.504120 (0.128163) 1.508008 / 1.541195 (-0.033187) 1.513967 / 1.468490 (0.045477) 0.403056 / 4.584777 (-4.181721) 2.340011 / 3.745712 (-1.405701) 2.552319 / 5.269862 (-2.717543) 1.549741 / 4.565676 (-3.015935) 0.046303 / 0.424275 (-0.377972) 0.004768 / 0.007607 (-0.002839) 0.356921 / 0.226044 (0.130877) 3.506410 / 2.268929 (1.237482) 1.975394 / 55.444624 (-53.469230) 1.688683 / 6.876477 (-5.187794) 1.715502 / 2.142072 (-0.426571) 0.471016 / 4.805227 (-4.334212) 0.099552 / 6.500664 (-6.401112) 0.042095 / 0.075469 (-0.033374)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.955784 / 1.841788 (-0.886004) 11.191802 / 8.074308 (3.117494) 10.127818 / 10.191392 (-0.063574) 0.141225 / 0.680424 (-0.539199) 0.014486 / 0.534201 (-0.519715) 0.267204 / 0.579283 (-0.312079) 0.289108 / 0.434364 (-0.145256) 0.309458 / 0.540337 (-0.230880) 0.422802 / 1.386936 (-0.964134)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004797 / 0.011353 (-0.006556) 0.002907 / 0.011008 (-0.008101) 0.047666 / 0.038508 (0.009158) 0.051183 / 0.023109 (0.028074) 0.266315 / 0.275898 (-0.009583) 0.286429 / 0.323480 (-0.037051) 0.003954 / 0.007986 (-0.004031) 0.002041 / 0.004328 (-0.002288) 0.047652 / 0.004250 (0.043401) 0.038211 / 0.037052 (0.001158) 0.272210 / 0.258489 (0.013721) 0.299425 / 0.293841 (0.005584) 0.024266 / 0.128546 (-0.104280) 0.006747 / 0.075646 (-0.068900) 0.052959 / 0.419271 (-0.366312) 0.032094 / 0.043533 (-0.011439) 0.265677 / 0.255139 (0.010538) 0.285373 / 0.283200 (0.002174) 0.017577 / 0.141683 (-0.124106) 1.114514 / 1.452155 (-0.337640) 1.212970 / 1.492716 (-0.279746)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.088347 / 0.018006 (0.070341) 0.296678 / 0.000490 (0.296188) 0.000209 / 0.000200 (0.000009) 0.000044 / 0.000054 (-0.000010)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021159 / 0.037411 (-0.016253) 0.069886 / 0.014526 (0.055360) 0.079832 / 0.176557 (-0.096725) 0.115512 / 0.737135 (-0.621623) 0.081600 / 0.296338 (-0.214739)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.292659 / 0.215209 (0.077450) 2.872556 / 2.077655 (0.794901) 1.573017 / 1.504120 (0.068897) 1.445122 / 1.541195 (-0.096072) 1.485584 / 1.468490 (0.017094) 0.388638 / 4.584777 (-4.196139) 2.434847 / 3.745712 (-1.310865) 2.518167 / 5.269862 (-2.751695) 1.503000 / 4.565676 (-3.062676) 0.045123 / 0.424275 (-0.379153) 0.004778 / 0.007607 (-0.002829) 0.347955 / 0.226044 (0.121910) 3.384819 / 2.268929 (1.115891) 1.920185 / 55.444624 (-53.524439) 1.646910 / 6.876477 (-5.229567) 1.638092 / 2.142072 (-0.503980) 0.450535 / 4.805227 (-4.354692) 0.095301 / 6.500664 (-6.405363) 0.040275 / 0.075469 (-0.035194)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.956088 / 1.841788 (-0.885700) 11.776642 / 8.074308 (3.702334) 10.651063 / 10.191392 (0.459671) 0.127079 / 0.680424 (-0.553345) 0.015080 / 0.534201 (-0.519121) 0.273737 / 0.579283 (-0.305546) 0.271434 / 0.434364 (-0.162929) 0.308448 / 0.540337 (-0.231889) 0.412467 / 1.386936 (-0.974469)

@albertvillanova
Copy link
Member Author

Once this PR is merged, we should upload the missing version to conda.

@lhoestq you did this in the past. If you tell me your approach (I see a tag called VERSION...), I could do it myself.

@lhoestq
Copy link
Member

lhoestq commented Nov 15, 2023

Maybe open a PR against the 2.14 branch and update release-conda.yml like this ?

- on:
-   push:
-     tags:
-       - "[0-9]+.[0-9]+.[0-9]+*"
+ on: push

and then set it back to normal after the release is done

@albertvillanova
Copy link
Member Author

After having cherry-picked the commit in this PR, I have released the conda package. See:

I am merging this PR.

@albertvillanova albertvillanova merged commit d122b3d into main Nov 15, 2023
13 checks passed
@albertvillanova albertvillanova deleted the fix-conda-release-pyarrow-hotfix branch November 15, 2023 17:09
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004993 / 0.011353 (-0.006360) 0.002964 / 0.011008 (-0.008044) 0.062588 / 0.038508 (0.024080) 0.030794 / 0.023109 (0.007685) 0.234856 / 0.275898 (-0.041042) 0.264807 / 0.323480 (-0.058673) 0.003139 / 0.007986 (-0.004847) 0.002498 / 0.004328 (-0.001831) 0.048058 / 0.004250 (0.043807) 0.048349 / 0.037052 (0.011296) 0.238210 / 0.258489 (-0.020279) 0.278144 / 0.293841 (-0.015697) 0.023219 / 0.128546 (-0.105327) 0.007296 / 0.075646 (-0.068351) 0.203263 / 0.419271 (-0.216008) 0.058844 / 0.043533 (0.015311) 0.246330 / 0.255139 (-0.008809) 0.264550 / 0.283200 (-0.018649) 0.018580 / 0.141683 (-0.123103) 1.084163 / 1.452155 (-0.367992) 1.154891 / 1.492716 (-0.337825)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.092393 / 0.018006 (0.074387) 0.300545 / 0.000490 (0.300055) 0.000203 / 0.000200 (0.000003) 0.000047 / 0.000054 (-0.000008)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018648 / 0.037411 (-0.018763) 0.063151 / 0.014526 (0.048625) 0.074206 / 0.176557 (-0.102350) 0.120929 / 0.737135 (-0.616207) 0.075970 / 0.296338 (-0.220368)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.278489 / 0.215209 (0.063279) 2.664804 / 2.077655 (0.587150) 1.433040 / 1.504120 (-0.071080) 1.321416 / 1.541195 (-0.219779) 1.320964 / 1.468490 (-0.147526) 0.401289 / 4.584777 (-4.183488) 2.365310 / 3.745712 (-1.380402) 2.635798 / 5.269862 (-2.634063) 1.584384 / 4.565676 (-2.981293) 0.045675 / 0.424275 (-0.378600) 0.004854 / 0.007607 (-0.002753) 0.337592 / 0.226044 (0.111548) 3.330462 / 2.268929 (1.061534) 1.794507 / 55.444624 (-53.650117) 1.531284 / 6.876477 (-5.345193) 1.507165 / 2.142072 (-0.634908) 0.478622 / 4.805227 (-4.326606) 0.099105 / 6.500664 (-6.401560) 0.041575 / 0.075469 (-0.033894)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.941790 / 1.841788 (-0.899997) 11.609871 / 8.074308 (3.535563) 10.770869 / 10.191392 (0.579477) 0.138931 / 0.680424 (-0.541493) 0.014406 / 0.534201 (-0.519795) 0.269681 / 0.579283 (-0.309602) 0.260556 / 0.434364 (-0.173808) 0.308244 / 0.540337 (-0.232093) 0.428867 / 1.386936 (-0.958069)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004803 / 0.011353 (-0.006550) 0.003263 / 0.011008 (-0.007745) 0.049143 / 0.038508 (0.010635) 0.052033 / 0.023109 (0.028924) 0.267815 / 0.275898 (-0.008083) 0.288733 / 0.323480 (-0.034747) 0.004159 / 0.007986 (-0.003826) 0.002407 / 0.004328 (-0.001921) 0.048978 / 0.004250 (0.044728) 0.038994 / 0.037052 (0.001942) 0.264028 / 0.258489 (0.005539) 0.303930 / 0.293841 (0.010090) 0.024283 / 0.128546 (-0.104263) 0.007201 / 0.075646 (-0.068446) 0.053810 / 0.419271 (-0.365461) 0.032611 / 0.043533 (-0.010922) 0.266730 / 0.255139 (0.011591) 0.281564 / 0.283200 (-0.001635) 0.018720 / 0.141683 (-0.122963) 1.140676 / 1.452155 (-0.311479) 1.206604 / 1.492716 (-0.286113)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.109390 / 0.018006 (0.091384) 0.313783 / 0.000490 (0.313294) 0.000228 / 0.000200 (0.000028) 0.000050 / 0.000054 (-0.000004)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021228 / 0.037411 (-0.016183) 0.070505 / 0.014526 (0.055979) 0.081961 / 0.176557 (-0.094595) 0.119943 / 0.737135 (-0.617193) 0.083582 / 0.296338 (-0.212757)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.295702 / 0.215209 (0.080493) 2.886865 / 2.077655 (0.809210) 1.583206 / 1.504120 (0.079086) 1.451129 / 1.541195 (-0.090065) 1.486253 / 1.468490 (0.017763) 0.403207 / 4.584777 (-4.181570) 2.408889 / 3.745712 (-1.336824) 2.578480 / 5.269862 (-2.691381) 1.533066 / 4.565676 (-3.032610) 0.046075 / 0.424275 (-0.378200) 0.004877 / 0.007607 (-0.002730) 0.345995 / 0.226044 (0.119950) 3.377039 / 2.268929 (1.108110) 1.944614 / 55.444624 (-53.500010) 1.677691 / 6.876477 (-5.198786) 1.672828 / 2.142072 (-0.469244) 0.468426 / 4.805227 (-4.336802) 0.097290 / 6.500664 (-6.403374) 0.040695 / 0.075469 (-0.034774)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.965778 / 1.841788 (-0.876010) 12.092639 / 8.074308 (4.018331) 11.210968 / 10.191392 (1.019576) 0.131212 / 0.680424 (-0.549212) 0.015865 / 0.534201 (-0.518336) 0.285702 / 0.579283 (-0.293581) 0.278319 / 0.434364 (-0.156045) 0.336063 / 0.540337 (-0.204275) 0.426265 / 1.386936 (-0.960671)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants