Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Preserve split order in DataFilesDict #6198

Merged
merged 4 commits into from
Aug 31, 2023
Merged

Preserve split order in DataFilesDict #6198

merged 4 commits into from
Aug 31, 2023

Conversation

albertvillanova
Copy link
Member

After investigation, I have found that this copy forces the splits to be sorted alphabetically:

builder_config = copy.deepcopy(builder_config)

This PR removes the alphabetically sort of DataFilesDict keys.

  • Note that for a dict, the order of keys is relevant when hashing:
    hash1 = Hasher.hash({'train': 'train.csv', 'test': 'test.csv'})
    hash2 = Hasher.hash({'test': 'test.csv', 'train': 'train.csv'})
    assert hash1 != hash2
  • The DataFilesDict is a subclass of dict, thus the order should be relevant as well
    hash1 = Hasher.hash(DataFilesDict({'train': 'train.csv', 'test': 'test.csv'}))
    hash2 = Hasher.hash(DataFilesDict({'test': 'test.csv', 'train': 'train.csv'}))
    assert hash1 != hash2

Fix #6196.

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented Aug 31, 2023

The documentation is not available anymore as the PR was closed or merged.

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007621 / 0.011353 (-0.003732) 0.004534 / 0.011008 (-0.006475) 0.099834 / 0.038508 (0.061326) 0.083029 / 0.023109 (0.059920) 0.387559 / 0.275898 (0.111661) 0.422453 / 0.323480 (0.098973) 0.006070 / 0.007986 (-0.001916) 0.003725 / 0.004328 (-0.000604) 0.075923 / 0.004250 (0.071672) 0.060578 / 0.037052 (0.023525) 0.403569 / 0.258489 (0.145079) 0.444991 / 0.293841 (0.151150) 0.035847 / 0.128546 (-0.092699) 0.009872 / 0.075646 (-0.065774) 0.335506 / 0.419271 (-0.083766) 0.060509 / 0.043533 (0.016976) 0.381034 / 0.255139 (0.125895) 0.426938 / 0.283200 (0.143738) 0.027662 / 0.141683 (-0.114021) 1.729565 / 1.452155 (0.277410) 1.842082 / 1.492716 (0.349366)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.230371 / 0.018006 (0.212365) 0.518216 / 0.000490 (0.517726) 0.003897 / 0.000200 (0.003697) 0.000087 / 0.000054 (0.000033)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.031942 / 0.037411 (-0.005470) 0.096609 / 0.014526 (0.082083) 0.112707 / 0.176557 (-0.063850) 0.178849 / 0.737135 (-0.558286) 0.112793 / 0.296338 (-0.183546)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.445896 / 0.215209 (0.230687) 4.451173 / 2.077655 (2.373519) 2.183380 / 1.504120 (0.679260) 1.991583 / 1.541195 (0.450388) 2.096219 / 1.468490 (0.627729) 0.566692 / 4.584777 (-4.018085) 4.078278 / 3.745712 (0.332566) 3.787950 / 5.269862 (-1.481911) 2.372651 / 4.565676 (-2.193025) 0.065500 / 0.424275 (-0.358775) 0.008918 / 0.007607 (0.001311) 0.535589 / 0.226044 (0.309545) 5.364130 / 2.268929 (3.095201) 2.805381 / 55.444624 (-52.639244) 2.350769 / 6.876477 (-4.525708) 2.592887 / 2.142072 (0.450814) 0.675475 / 4.805227 (-4.129752) 0.153907 / 6.500664 (-6.346757) 0.071138 / 0.075469 (-0.004331)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.498236 / 1.841788 (-0.343552) 22.810460 / 8.074308 (14.736152) 16.275035 / 10.191392 (6.083643) 0.200242 / 0.680424 (-0.480182) 0.021553 / 0.534201 (-0.512648) 0.469437 / 0.579283 (-0.109846) 0.477752 / 0.434364 (0.043388) 0.537411 / 0.540337 (-0.002927) 0.741730 / 1.386936 (-0.645206)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008009 / 0.011353 (-0.003344) 0.004626 / 0.011008 (-0.006382) 0.074871 / 0.038508 (0.036363) 0.085214 / 0.023109 (0.062105) 0.478057 / 0.275898 (0.202159) 0.522038 / 0.323480 (0.198558) 0.007055 / 0.007986 (-0.000931) 0.003813 / 0.004328 (-0.000515) 0.076238 / 0.004250 (0.071988) 0.065738 / 0.037052 (0.028686) 0.484391 / 0.258489 (0.225902) 0.524425 / 0.293841 (0.230584) 0.038375 / 0.128546 (-0.090171) 0.009964 / 0.075646 (-0.065682) 0.084027 / 0.419271 (-0.335245) 0.056979 / 0.043533 (0.013447) 0.486910 / 0.255139 (0.231771) 0.501185 / 0.283200 (0.217985) 0.027000 / 0.141683 (-0.114683) 1.767378 / 1.452155 (0.315224) 1.870511 / 1.492716 (0.377795)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.267067 / 0.018006 (0.249061) 0.501714 / 0.000490 (0.501224) 0.012379 / 0.000200 (0.012179) 0.000129 / 0.000054 (0.000075)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.036706 / 0.037411 (-0.000706) 0.110064 / 0.014526 (0.095538) 0.124896 / 0.176557 (-0.051660) 0.186730 / 0.737135 (-0.550405) 0.123501 / 0.296338 (-0.172837)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.510793 / 0.215209 (0.295583) 5.133056 / 2.077655 (3.055401) 2.776456 / 1.504120 (1.272336) 2.595557 / 1.541195 (1.054362) 2.717922 / 1.468490 (1.249432) 0.578333 / 4.584777 (-4.006444) 4.169935 / 3.745712 (0.424223) 3.800078 / 5.269862 (-1.469784) 2.385866 / 4.565676 (-2.179810) 0.068114 / 0.424275 (-0.356161) 0.008771 / 0.007607 (0.001164) 0.597894 / 0.226044 (0.371850) 5.970293 / 2.268929 (3.701364) 3.352715 / 55.444624 (-52.091909) 2.972062 / 6.876477 (-3.904415) 3.179232 / 2.142072 (1.037160) 0.689838 / 4.805227 (-4.115389) 0.154890 / 6.500664 (-6.345774) 0.072321 / 0.075469 (-0.003148)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.613666 / 1.841788 (-0.228121) 23.441538 / 8.074308 (15.367230) 17.105417 / 10.191392 (6.914025) 0.171449 / 0.680424 (-0.508975) 0.023257 / 0.534201 (-0.510944) 0.466724 / 0.579283 (-0.112559) 0.470835 / 0.434364 (0.036471) 0.561860 / 0.540337 (0.021523) 0.759048 / 1.386936 (-0.627888)

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007557 / 0.011353 (-0.003796) 0.004211 / 0.011008 (-0.006797) 0.096243 / 0.038508 (0.057735) 0.083603 / 0.023109 (0.060493) 0.367114 / 0.275898 (0.091216) 0.415182 / 0.323480 (0.091702) 0.005796 / 0.007986 (-0.002189) 0.003791 / 0.004328 (-0.000537) 0.073505 / 0.004250 (0.069254) 0.060335 / 0.037052 (0.023283) 0.392182 / 0.258489 (0.133693) 0.421315 / 0.293841 (0.127474) 0.036128 / 0.128546 (-0.092419) 0.009953 / 0.075646 (-0.065693) 0.338965 / 0.419271 (-0.080307) 0.061006 / 0.043533 (0.017473) 0.372317 / 0.255139 (0.117178) 0.414367 / 0.283200 (0.131167) 0.026970 / 0.141683 (-0.114713) 1.730381 / 1.452155 (0.278227) 1.808340 / 1.492716 (0.315624)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.222622 / 0.018006 (0.204615) 0.474064 / 0.000490 (0.473574) 0.004817 / 0.000200 (0.004617) 0.000089 / 0.000054 (0.000034)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.032528 / 0.037411 (-0.004883) 0.097457 / 0.014526 (0.082931) 0.112273 / 0.176557 (-0.064283) 0.177953 / 0.737135 (-0.559182) 0.112358 / 0.296338 (-0.183981)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.442601 / 0.215209 (0.227392) 4.442065 / 2.077655 (2.364410) 2.156813 / 1.504120 (0.652694) 1.970289 / 1.541195 (0.429094) 2.052878 / 1.468490 (0.584388) 0.562661 / 4.584777 (-4.022116) 4.255529 / 3.745712 (0.509817) 3.767650 / 5.269862 (-1.502212) 2.431078 / 4.565676 (-2.134598) 0.065624 / 0.424275 (-0.358651) 0.008738 / 0.007607 (0.001131) 0.546839 / 0.226044 (0.320795) 5.362863 / 2.268929 (3.093934) 2.695924 / 55.444624 (-52.748701) 2.334589 / 6.876477 (-4.541888) 2.530757 / 2.142072 (0.388685) 0.675991 / 4.805227 (-4.129236) 0.153852 / 6.500664 (-6.346813) 0.069189 / 0.075469 (-0.006280)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.522916 / 1.841788 (-0.318872) 21.515907 / 8.074308 (13.441599) 16.411708 / 10.191392 (6.220316) 0.168245 / 0.680424 (-0.512179) 0.021165 / 0.534201 (-0.513036) 0.461838 / 0.579283 (-0.117446) 0.488867 / 0.434364 (0.054503) 0.536278 / 0.540337 (-0.004059) 0.766690 / 1.386936 (-0.620246)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007683 / 0.011353 (-0.003670) 0.004401 / 0.011008 (-0.006608) 0.075463 / 0.038508 (0.036955) 0.081737 / 0.023109 (0.058628) 0.466469 / 0.275898 (0.190571) 0.514909 / 0.323480 (0.191429) 0.006106 / 0.007986 (-0.001880) 0.003936 / 0.004328 (-0.000393) 0.076773 / 0.004250 (0.072523) 0.061025 / 0.037052 (0.023973) 0.473348 / 0.258489 (0.214858) 0.525326 / 0.293841 (0.231485) 0.038224 / 0.128546 (-0.090322) 0.009559 / 0.075646 (-0.066087) 0.080847 / 0.419271 (-0.338424) 0.056738 / 0.043533 (0.013205) 0.475116 / 0.255139 (0.219977) 0.494689 / 0.283200 (0.211490) 0.029364 / 0.141683 (-0.112319) 1.796681 / 1.452155 (0.344527) 1.850600 / 1.492716 (0.357884)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.327126 / 0.018006 (0.309119) 0.469186 / 0.000490 (0.468696) 0.050600 / 0.000200 (0.050400) 0.000439 / 0.000054 (0.000385)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.036710 / 0.037411 (-0.000701) 0.108669 / 0.014526 (0.094143) 0.119808 / 0.176557 (-0.056748) 0.181501 / 0.737135 (-0.555634) 0.121487 / 0.296338 (-0.174852)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.509076 / 0.215209 (0.293867) 5.056970 / 2.077655 (2.979316) 2.775958 / 1.504120 (1.271838) 2.592548 / 1.541195 (1.051353) 2.654381 / 1.468490 (1.185890) 0.557407 / 4.584777 (-4.027370) 4.418232 / 3.745712 (0.672519) 3.698072 / 5.269862 (-1.571790) 2.380607 / 4.565676 (-2.185069) 0.066242 / 0.424275 (-0.358034) 0.008350 / 0.007607 (0.000743) 0.572354 / 0.226044 (0.346309) 5.857637 / 2.268929 (3.588709) 3.242512 / 55.444624 (-52.202112) 2.891144 / 6.876477 (-3.985332) 3.217987 / 2.142072 (1.075915) 0.676049 / 4.805227 (-4.129178) 0.155515 / 6.500664 (-6.345149) 0.068616 / 0.075469 (-0.006853)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.670048 / 1.841788 (-0.171740) 22.629573 / 8.074308 (14.555265) 16.887676 / 10.191392 (6.696284) 0.168571 / 0.680424 (-0.511853) 0.023361 / 0.534201 (-0.510840) 0.463358 / 0.579283 (-0.115925) 0.463278 / 0.434364 (0.028914) 0.602397 / 0.540337 (0.062060) 0.793249 / 1.386936 (-0.593687)

Copy link
Member

@lhoestq lhoestq left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

good catch !

@albertvillanova albertvillanova merged commit 00cb5cc into main Aug 31, 2023
@albertvillanova albertvillanova deleted the fix-6196 branch August 31, 2023 13:48
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006693 / 0.011353 (-0.004660) 0.004100 / 0.011008 (-0.006908) 0.084166 / 0.038508 (0.045658) 0.074469 / 0.023109 (0.051360) 0.356092 / 0.275898 (0.080194) 0.392389 / 0.323480 (0.068909) 0.003996 / 0.007986 (-0.003990) 0.004020 / 0.004328 (-0.000308) 0.064997 / 0.004250 (0.060747) 0.053897 / 0.037052 (0.016845) 0.362942 / 0.258489 (0.104453) 0.408694 / 0.293841 (0.114854) 0.031656 / 0.128546 (-0.096890) 0.008713 / 0.075646 (-0.066933) 0.289306 / 0.419271 (-0.129966) 0.053067 / 0.043533 (0.009534) 0.358740 / 0.255139 (0.103601) 0.393347 / 0.283200 (0.110147) 0.025430 / 0.141683 (-0.116253) 1.486114 / 1.452155 (0.033959) 1.572698 / 1.492716 (0.079981)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.215423 / 0.018006 (0.197417) 0.467694 / 0.000490 (0.467204) 0.003965 / 0.000200 (0.003765) 0.000112 / 0.000054 (0.000057)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.027936 / 0.037411 (-0.009475) 0.084235 / 0.014526 (0.069709) 0.136275 / 0.176557 (-0.040282) 0.151154 / 0.737135 (-0.585982) 0.185592 / 0.296338 (-0.110747)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.393784 / 0.215209 (0.178575) 3.927878 / 2.077655 (1.850223) 1.961216 / 1.504120 (0.457096) 1.802264 / 1.541195 (0.261069) 1.971186 / 1.468490 (0.502696) 0.487981 / 4.584777 (-4.096796) 3.649046 / 3.745712 (-0.096666) 3.302471 / 5.269862 (-1.967391) 2.058075 / 4.565676 (-2.507602) 0.057072 / 0.424275 (-0.367203) 0.007624 / 0.007607 (0.000017) 0.470139 / 0.226044 (0.244095) 4.697711 / 2.268929 (2.428783) 2.494813 / 55.444624 (-52.949811) 2.133084 / 6.876477 (-4.743393) 2.329740 / 2.142072 (0.187667) 0.585857 / 4.805227 (-4.219371) 0.134442 / 6.500664 (-6.366223) 0.060860 / 0.075469 (-0.014609)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.248504 / 1.841788 (-0.593283) 19.448427 / 8.074308 (11.374119) 14.446139 / 10.191392 (4.254747) 0.168081 / 0.680424 (-0.512342) 0.018028 / 0.534201 (-0.516173) 0.395061 / 0.579283 (-0.184222) 0.418777 / 0.434364 (-0.015587) 0.454509 / 0.540337 (-0.085828) 0.628488 / 1.386936 (-0.758448)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006946 / 0.011353 (-0.004406) 0.004096 / 0.011008 (-0.006912) 0.065322 / 0.038508 (0.026813) 0.074336 / 0.023109 (0.051227) 0.405327 / 0.275898 (0.129429) 0.436878 / 0.323480 (0.113398) 0.006083 / 0.007986 (-0.001902) 0.003345 / 0.004328 (-0.000984) 0.065725 / 0.004250 (0.061474) 0.056398 / 0.037052 (0.019345) 0.406906 / 0.258489 (0.148417) 0.443330 / 0.293841 (0.149489) 0.033036 / 0.128546 (-0.095510) 0.008503 / 0.075646 (-0.067144) 0.071865 / 0.419271 (-0.347406) 0.048956 / 0.043533 (0.005423) 0.404579 / 0.255139 (0.149440) 0.424904 / 0.283200 (0.141704) 0.021786 / 0.141683 (-0.119897) 1.491868 / 1.452155 (0.039713) 1.565252 / 1.492716 (0.072536)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.231363 / 0.018006 (0.213357) 0.454962 / 0.000490 (0.454472) 0.004680 / 0.000200 (0.004480) 0.000100 / 0.000054 (0.000045)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.032569 / 0.037411 (-0.004843) 0.094928 / 0.014526 (0.080402) 0.108096 / 0.176557 (-0.068461) 0.158727 / 0.737135 (-0.578409) 0.106951 / 0.296338 (-0.189387)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.431469 / 0.215209 (0.216260) 4.283929 / 2.077655 (2.206274) 2.283891 / 1.504120 (0.779771) 2.118172 / 1.541195 (0.576977) 2.192628 / 1.468490 (0.724138) 0.492026 / 4.584777 (-4.092751) 3.692126 / 3.745712 (-0.053587) 3.269827 / 5.269862 (-2.000035) 2.028948 / 4.565676 (-2.536728) 0.057932 / 0.424275 (-0.366344) 0.007301 / 0.007607 (-0.000306) 0.508411 / 0.226044 (0.282367) 5.072803 / 2.268929 (2.803875) 2.756532 / 55.444624 (-52.688092) 2.432192 / 6.876477 (-4.444285) 2.654864 / 2.142072 (0.512791) 0.589458 / 4.805227 (-4.215769) 0.133924 / 6.500664 (-6.366740) 0.060764 / 0.075469 (-0.014705)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.350737 / 1.841788 (-0.491051) 20.265217 / 8.074308 (12.190909) 14.969039 / 10.191392 (4.777647) 0.164226 / 0.680424 (-0.516198) 0.020090 / 0.534201 (-0.514111) 0.397010 / 0.579283 (-0.182273) 0.412927 / 0.434364 (-0.021437) 0.473931 / 0.540337 (-0.066406) 0.653462 / 1.386936 (-0.733474)

albertvillanova added a commit that referenced this pull request Oct 24, 2023
* Test split order in DataFilesDict

* Remove key sorting in DataFilesDict

* Fix test_cache_dir_for_data_files
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Split order is not preserved
3 participants